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Problem statement

o g: R, — R;: monotone concave function

@ a,c € R’ : objective vectors
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s.t. x is a vertex of a polytope

° max  a'x — linear optimization
X vertex
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X in polytope



Problem statemen
Project Evaluation and Review Technique (PERT)

@ Project composed of many individual activities
@ Each activity requires a given amount of time to complete

@ Precedence relations between activities

Interesting questions

@ What is the duration of the project?
@ Which are the critical activities?

o Activities more likely to cause delays in the project
o Activities that should be monitored carefully
o Activities where additional resources should be allocated



Problem statemen
Project Evaluation and Review Technique (PERT)

@ A: set of activities required to complete a project
@ G: DAG encoding precedence relations
o d; ~ N(pi,0?): duration of activity i € A (independent)

(1, 02)




Problem statemen
Project Evaluation and Review Technique (PERT)

Traditional PERT (e.g. Nahmias 2001, Chapter 9)
@ Find path with largest expected duration

o Estimate project duration using this path

(1, 02)




Problem statement
Value-at-Risk

Normal Curve, mean= 0,SD = 1
Shaded Area = 0.95

density
00 01 02 03 04

T
0 1.645

For d ~ N (u,0?)

VaR,(d) ::sup{k €R:Pr(d <k)< a}



Problem statement
Value-at-Risk

Normal Curve, mean= 0,SD = 1
Shaded Area = 0.95

density
00 01 02 03 04

T
0 1.645

For d ~ N (u,0?)
VaR,(d) ::sup{k €R:Pr(d <k)< a}
=+ o (a)o

®: CDF of the standard normal distribution



Maximizing utility functions Problem statement

VaR,-critical path
Path with maximum Value-at-Risk (VaR) at confidence level o

@ x5: 1 if activity a € A belongs to the critical path, 0 otherwise
@ 6T(i),8(i): incoming and outgoing arcs to node i

max Z taxa + 7 a) Z 02x,2

acA acA
-1 ifi=s
st Y Xa— Y xa=1Q 1 ifi=t
acs+ (i) acs— (i)

0 otherwise
x; €{0,1}, VacA
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VaR,-critical path

Path with maximum Value-at-Risk (VaR) at confidence level o
@ x,: 1 if activity a € A belongs to the critical path, 0 otherwise

max Z taxa + 07 a) Z 2%,

acA acA

s.t. x is a vertex of the path polytope



Maximizing utility functions Problem statement

Assortment optimization

@ N: set of ads

M: set of advertising spots

ajj: profit from displaying ad i € N in spot j € M

B: fixed profit per click

@ Goal: choose assortment S C N x M maximizing profit
Assortment: assignment of ads to advertising spots



Maximizing utility functions Problem statement

Assortment optimization

Multinomial logit (MNL) discrete choice model

o Customers are utility maximizers
@ ujj: estimated customer utility for ad i in spot j
@ No-click choice has zero estimated utility

@ Probability of clicking ad i in spot j given assortment S C N x M

etii

:1+ Z eMke
(k.0)eS

P;(5)



Maximizing utility functions Problem statement

Assortment optimization

xjj: 1if ad i is assigned to spot j, 0 otherwise

Hij ye..
Dien jem €V Xij

max E E ajiXji +
Y Bl"‘ZieN jem eMixij

s.t.

ieN jeM
Zx,-j <1, VjeM (spots contain at most one ad)
ieN

Z xj<1, VieN (ads are displayed at most once)
JEM

xj€{0,1}, Vie NNVje M



Maximizing utility functions Problem statement

Assortment optimization

xjj: 1if ad i is assigned to spot j, 0 otherwise

Hij ye..
Dien jem €V Xij

max E E ajiXij +
Y 61+ZieN jem €I Xjj

ieN jeM
s.t. Zx,-j <1, VjeM (spots contain at most one ad)

ieN

Z xj<1, VieN (ads are displayed at most once)

JjeM

xj€{0,1}, Vie NNVje M

- /
° ¢ i= e, g(cx) = A1l
@ Feasible region is the set of vertices of assignment polytope
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Other applications

@ Reliability of a parallel system
Maximize tradeoff between benefit and reliability

@ Robust conic quadratic optimization
Minimize Value-at-Risk with discrete uncertainty set

o Multi-armed bandit
Exponential number of arms characterized by combinatorial set
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Maximizing utility functions Literature

Literature

X: polytope

Vx: vertices of X

max f(x) := a'x + g(c'x)
x€eVx

Maximization of a submodular function

Greedy algorithm

o 0.63-approx. for cardinality constraint (Nemhauser et al. 1978)
o 0.5-approx. for matroid polytopes (Fisher et al. 1978)

Other approaches
o 0.63-approx. for matroids (Calinescu et al. 2011). Complexity: O(n?)
o (0.63 — ¢)-approx. for down-monotone polytopes (Chekuri et al. 2014).
Complexity depends on X, requires ellipsoid method
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© Maximizing utility functions

@ Approximation algorithm
@ Description
@ Approximation ratio
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Approximation algorithm

Algorithm Feasible region

@ Find xp € argmaxa’x + g(c'x)
xeX
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Approximation algorithm

Algorithm Feasible region

@ Find xp € argmaxa’x + g(c'x)
xeX

Q@ x*: optimal extreme point to
p p

max a’x
s.t. /x = c'xg

xeX
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Approximation algorithm

Algorithm Feasible region

@ Find xp € argmaxa’x + g(c'x)
xeX

@ x*: optimal extreme point to

max a’x
s.t. /x = c'xg

xeX

Prop: x* lies on an edge of X




(\ENIUIPAL RN AT GG EM  Approximation algorithm

Approximation algorithm

X2

Algorithm Feasible region
@ Find xp € argmax a’x + g(c¢’'x) e
xeX ,/’
@ x*: optimal extreme point to J
2xy

max a’x
s.t. /x = c'xg

xeX

Prop: x* lies on an edge of X

© Two vertices x; and x» on edge

@ return arg max, f(x;)
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Approximation ratio

@ xq: best vertex solution

@ x*: optimal solution of relaxation
= f(x*) is an upper bound on the optimal value

Optimality gap:
A FO) = F(x)
f(x1)

Approximation ratio:

—_
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Approximation ratios

Proposition

If g is the square root function, then the algorithm is a 0.8-approximation

@ Improvement over previous 0.63-approximations (for simple regions)

e Valid for any polytope (e.g. paths)
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Approximation ratios

Proposition

If g is the square root function, then the algorithm is a 0.8-approximation

@ Improvement over previous 0.63-approximations (for simple regions)

e Valid for any polytope (e.g. paths)

Proposition
If g is monotone, then the algorithm is a 0.5-approximation

@ Same ratio as greedy algorithm (for matroid polytopes)

e Valid for any polytope (e.g. assignment)
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@ Computations
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@ Det: traditional PERT method. Complexity: O(|A|)

@ VaR: VaR critical path. Complexity: O(|A|log 1)

@ Measure the error between estimated VaR and true VaR of the project
@ Averages of 15 instances, 200 < |A| < 1000

Confidence Error (%)
level (%) Det VaR

Improvement (%)

90.0 31.7 227 28.4
97.5 257 126 51.0
99.0 246 106 56.9

Solution times < 1s
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Assortment optimization

@ n X n assignments

Approximation algorithm complexity O(n® Iog%)

. . 5 _fx
Optimality gap A = frelag_vertex

vertex

Averages over five instances

n 3 10 100 1000

Time (ms) 1 2 66 2,892
A (%) 0.24 0.01 0.00 0.00
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Conic constraints Introduction

Problem statement

e P C{0,1}" x R™: feasible region
@ i costs (uncertain)
o i~ N(ac),or
ntm 5
° ﬂe{ueR"*"’: > (”'Cf")gl}
i=1 ’

Minimize “worst case” scenario




Conic constraints Introduction

Problem statement

e P C{0,1}" x R™: feasible region

@ i costs (uncertain)
o i~ N(ac),or
n+m 5
° ﬁe{ueR"*’": > (”j)gl}
i=1 ’

Minimize “worst case” scenario

min a'x + z

n+m

g c,-x,-2 <z
i=1

xeP,zeRy

s.t.




Conic constraints Introduction

Problem statement

e P C{0,1}" x R™: feasible region

@ i costs (uncertain)
o i~ N(ac),or
n+m 5
° ﬁe{ueR"*’": > (”Ca)gl}
i=1 ’

Minimize “worst case” scenario

min a'x + z

n+m

E c,-xl.2 <z
i=1

xeP,zeRy

s.t.
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e Study of conic quadratic constraints

@ Valid inequalities
@ Pure-binary case
@ Mixed-binary case



Pure-binary case

K=< (x,z) € {0,1}" x R, :




Pure-binary case

K = {(X,Z)E{O,l}nXR+ : M§z}



Pure-binary case

K = {(x,z)E{O,l}”x]R+ : M§z}

f:{0,1}" — R with f(x) = v/c’x is submodular

M is polymatroid associated with f
M= {r e R} : n'x < f(x), Vx € {0,1}"}

o [1: set of extreme points of M

e Edmonds (1970) gave characterization of 1



Pure-binary case

Theorem (Atamtiirk and Narayanan 2008)

m'x < z Vr e

0<x,<1 i=1,...,n




Pure-binary case

Theorem (Atamtiirk and Narayanan 2008)

Separation problem: given fractional X, find best inequality to add:

max 7' X
el

Can be solved in O(nlog n) (Edmonds 1970)



Pure-binary case

Theorem (Atamtiirk and Narayanan 2008)

Separation problem: given fractional X, find best inequality to add:

max 7' X
el

Can be solved in O(nlog n) (Edmonds 1970)

@ Pure-binary case completely understood

@ Mixed-binary case poorly understood
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H=1{(x,y,2) € {0,1}" x RT*
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m
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@ Let I extreme points of polymatroid associated with f(x) = v/ ¢’x
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Conic constraints with continuous variables

Theorem (Convex hull of H)

Inequalities

m
(7'x)? + Zd,-y,-2 <z, mwell
i=1

and bound constraints completely describe conv(H)

The separation problem can be solved O(nlog n)

Other contributions
@ Bounded continuous variables

o Exploit additional constraints to get stronger inequalities
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@ Study of conic quadratic constraints

o Computations
@ General covariance matrix
@ Assortment optimization with mixed multinomial logit model



General covariance matrix

@ C > 0: covariance matrix

min a'x + vV x'Cx

s.t. ix,' =k
i=1

x €{0,1}"



General covariance matrix

@ C > 0: covariance matrix

© Decompose C:=D + F
e D>0,F>0
e D is diagonal

n
min a'x + E Diix; + x' Fx
i=1

s.t. ix,' =k
i=1

x €{0,1}"



General covariance matrix

@ C > 0: covariance matrix

© Decompose C:=D + F

n
. D>0,F>0
min a'x + Z Diixi + y? : Dis diago_nal
i=1
n
t ZXi o @ Introduce variable y := v/x’Fx
i=1

Vx'Fx <y
x € {0,1}",y e Ry



General covariance matrix

@ C > 0: covariance matrix

© Decompose C:=D + F
e D>0,F>0

n
min a'x + | > Dixj + 2 o D is diagonal

i=1

n
st in — K @ Introduce variable y := v/ x'Fx
i=1
Vx'Fx <y

x€{0,1}"y e Ry



Computational experiments - General covariance

e n=200

o CPLEX 12.6.2, two hour time limit, average over 15 instances

. default cplex cplex+cuts
diag k . . . : speedup
rimp time egap | rimp time egap
20 | 19.7 720 0.0 55.6 109 0.0 X7
low 30| 12.0 399 0.0 56.2 18 0.0 x 22
40 | 18.9 187 0.0 542 9 0.0 x21
20 | 145 4,034 09 51.0 2,650 0.2 X 2+
high 30 | 134 2,014 0.2 748 187 0.0 x 10+
40 | 21.8 1,128 0.1 740 15 0.0 X 75+
Average | 16.7 1,414 0.2 61.0 498 0.0




Conic constraints

Computational experiments - General covariance

100.0%
M default cplex M cplex+cuts
= 90.0%
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Assortment optimization with mixed-MNL

o N: set of products
@ M: set of customer classes

° ¢,di € RQ’: parameters of MNL corresponding to class j € M

cix
max 3 — 2
jam 1 Hdix
s.t. ZX,' < k
ieN
x e {0,1}V

e N P-hard
@ Hard to approximate with algorithm polynomial in |M|

@ Can be put in conic form



Computational experiments

e |N| =200

@ Classic MILP formulation vs. conic formulation with cuts

o CPLEX 12.6.2, two hour limit, averages over five instances

M|k cplex (MILP) cplex(conic)+cuts speedup
rimp time egap | rimp time egap
10 | 0.0 7,200 259 | 100.0 3 0.0 % 2,400+
4 20100 7,200 14.7 | 100.0 8 0.0 x 900+
40 | 0.0 7,200 2.7 100.0 81 0.0 x 90+
10 | 0.0 7,200 452 | 999 130 0.0 x 554
20 201 0.0 7,200 18.3 | 100.0 159 0.0 X 45+
40 1 0.0 7,200 3.1 100.0 132 0.0 x 55+
Average | 0.0 7,200 18.3 | 100.0 86 0.0
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Conclusions & future work

Conclusions

@ Nonlinear utility functions arise when modeling uncertainty

@ Current approaches for discrete nonlinear optimization are limited

@ Possible to have efficient algorithms



Conclusions & future work

Future work

Extensions of polymatroid inequalities

@ Polymatroid inequalities are “strong” for some feasible regions

o Generalized upper bounds
e Path constraints

@ Polymatroid inequalities can be improved for other feasible regions

e Cardinality constraint
e Knapsack constraint



Conclusions & future work

Future work

Other mixed-binary structures x € {0,1}", y € R™

n
e min—uy+VyTy st Y yi=1,
i=1 i
o Fixed charge structure
e Application: Portfolio optimization

xi <k, 0<y <x
1

n

e minf(y) st — Mx; <y < Mx;, D7 ;x5 <k

e Sparsity
o Application: Statistics (e.g. best subset regression)



Thank you!
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