Discrete conic quadratic optimization: strong formulations and algorithms

Andrés Gómez

Department of Industrial Engineering and Operations Research University of California Berkeley

February, 2017

Research overview

- Fixed-charge constraints^{1 2}. *Published in Networks* Simultaneous study of two fixed-charge constraints
- Maximizing utility functions¹. Forthcoming in Operations Research Approximation algorithm for nonlinear maximization
- Simplex for conic quadratic minimization¹. *In preparation* Algorithm for subproblems in branch & bound
- Study of conic quadratic constraints¹. *Submitted* Valid inequalities for conic quadratic optimization

¹Joint work with Alper Atamtürk

² Joint work with Simge Küçükyavuz

Research overview

- Fixed-charge constraints^{1 2}. *Published in Networks* Simultaneous study of two fixed-charge constraints
- Maximizing utility functions¹. Forthcoming in Operations Research Approximation algorithm for nonlinear maximization
- Simplex for conic quadratic minimization¹. *In preparation* Algorithm for subproblems in branch & bound
- Study of conic quadratic constraints¹. *Submitted* Valid inequalities for conic quadratic optimization

¹Joint work with Alper Atamtürk

² Joint work with Simge Küçükyavuz

Agenda

Maximizing utility functions

- Problem statement
- Literature
- Approximation algorithm
- Computations

2 Study of conic quadratic constraints

3 Conclusions & future work

Maximizing utility functions Problem statement

- Literature
- Approximation algorithm
- Computations

2 Study of conic quadratic constraints

3 Conclusions & future work

- $g: \mathbb{R}_+ \to \mathbb{R}_+$: monotone concave function
- $a, c \in \mathbb{R}^n_+$: objective vectors

 $\max a'x + g(c'x)$

s.t. x is a vertex of a polytope

- $g: \mathbb{R}_+ \to \mathbb{R}_+$: monotone concave function
- $a, c \in \mathbb{R}^n_+$: objective vectors

max a'x + g(c'x)s.t. x is a vertex of a polytope

• $\max_{x \text{ vertex}} a'x \rightarrow \text{linear optimization}$

- $g: \mathbb{R}_+ \to \mathbb{R}_+$: monotone concave function
- $a, c \in \mathbb{R}^n_+$: objective vectors

max a'x + g(c'x)s.t. x is a vertex of a polytope

- $\max_{x \text{ vertex}} a'x \rightarrow \text{linear optimization}$
- $\max_{x \text{ in polytope}} a'x + g(c'x) \rightarrow \text{convex optimization}$

Project Evaluation and Review Technique (PERT)

- Project composed of many individual activities
- Each activity requires a given amount of time to complete
- Precedence relations between activities

Interesting questions

- What is the duration of the project?
- Which are the critical activities?
 - Activities more likely to cause delays in the project
 - Activities that should be monitored carefully
 - Activities where additional resources should be allocated

Project Evaluation and Review Technique (PERT)

- A: set of activities required to complete a project
- G: DAG encoding precedence relations
- $\tilde{d}_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$: duration of activity $i \in A$ (independent)

Project Evaluation and Review Technique (PERT)

Traditional PERT (e.g. Nahmias 2001, Chapter 9)

- Find path with largest expected duration
- Estimate project duration using this path

Value-at-Risk

Value-at-Risk

For
$$\tilde{d} \sim \mathcal{N}(\mu, \sigma^2)$$

 $\operatorname{VaR}_{\alpha}(\tilde{d}) := \sup \left\{ k \in \mathbb{R} : \operatorname{Pr}(\tilde{d} \le k) \le \alpha \right\}$
 $= \mu + \Phi^{-1}(\alpha)\sigma$

 Φ : CDF of the standard normal distribution

VaR_{α} -critical path

Path with maximum Value-at-Risk (VaR) at confidence level lpha

- x_a : 1 if activity $a \in A$ belongs to the critical path, 0 otherwise
- $\delta^+(i), \delta^-(i)$: incoming and outgoing arcs to node *i*

$$\max \sum_{a \in A} \mu_a x_a + \Phi^{-1}(\alpha) \sqrt{\sum_{a \in A} \sigma_a^2 x_a^2}$$

s.t.
$$\sum_{a \in \delta^+(i)} x_a - \sum_{a \in \delta^-(i)} x_a = \begin{cases} -1 & \text{if } i = s \\ 1 & \text{if } i = t \\ 0 & \text{otherwise} \end{cases}$$
$$x_a \in \{0, 1\}, \quad \forall a \in A$$

VaR_{α} -critical path

Path with maximum Value-at-Risk (VaR) at confidence level α • x_a : 1 if activity $a \in A$ belongs to the critical path, 0 otherwise

$$\max \sum_{a \in A} \mu_a x_a + \Phi^{-1}(\alpha) \sqrt{\sum_{a \in A} \sigma_a^2 x_a}$$

s.t. x is a vertex of the path polytope

Assortment optimization

- N: set of ads
- M: set of advertising spots
- a_{ij} : profit from displaying ad $i \in N$ in spot $j \in M$
- β : fixed profit per click
- Goal: choose assortment S ⊆ N × M maximizing profit Assortment: assignment of ads to advertising spots

Assortment optimization

Multinomial logit (MNL) discrete choice model

- Customers are utility maximizers
- μ_{ij} : estimated customer utility for ad *i* in spot *j*
- No-click choice has zero estimated utility
- Probability of clicking ad *i* in spot *j* given assortment $S \subseteq N \times M$

$${\sf P}_{ij}(S) = rac{e^{\mu_{ij}}}{1+\sum\limits_{(k,\ell)\in S}e^{\mu_k\ell}}$$

Assortment optimization

 x_{ij} : 1 if ad *i* is assigned to spot *j*, 0 otherwise

$$\begin{split} \max \sum_{i \in N} \sum_{j \in M} a_{ij} x_{ij} + \beta \frac{\sum_{i \in N} \sum_{j \in M} e^{\mu_{ij}} x_{ij}}{1 + \sum_{i \in N} \sum_{j \in M} e^{\mu_{ij}} x_{ij}} \\ \text{s.t.} \sum_{i \in N} x_{ij} \leq 1, \quad \forall j \in M \qquad \text{(spots contain at most one ad)} \\ \sum_{j \in M} x_{ij} \leq 1, \quad \forall i \in N \qquad \text{(ads are displayed at most once)} \\ x_{ij} \in \{0, 1\}, \quad \forall i \in N, \forall j \in M \end{split}$$

Assortment optimization

 x_{ij} : 1 if ad *i* is assigned to spot *j*, 0 otherwise

$$\max \sum_{i \in N} \sum_{j \in M} a_{ij} x_{ij} + \beta \frac{\sum_{i \in N} \sum_{j \in M} e^{\mu_{ij}} x_{ij}}{1 + \sum_{i \in N} \sum_{j \in M} e^{\mu_{ij}} x_{ij}}$$
s.t.
$$\sum_{i \in N} x_{ij} \le 1, \quad \forall j \in M$$
 (spots contain at most one ad)
$$\sum_{j \in M} x_{ij} \le 1, \quad \forall i \in N$$
 (ads are displayed at most once)
$$x_{ij} \in \{0, 1\}, \quad \forall i \in N, \forall j \in M$$

•
$$c_{ij} := e^{\mu_{ij}}, g(c'x) = \beta \frac{c'x}{1+c'x}$$

• Feasible region is the set of vertices of assignment polytope

Other applications

• Reliability of a parallel system

Maximize tradeoff between benefit and reliability

 Robust conic quadratic optimization Minimize Value-at-Risk with discrete uncertainty set

• Multi-armed bandit

Exponential number of arms characterized by combinatorial set

Maximizing utility functions

Problem statement

• Literature

- Approximation algorithm
- Computations

2 Study of conic quadratic constraints

Literature

- X: polytope
- V_X : vertices of X

$$\max_{x \in V_X} f(x) := a'x + g(c'x)$$

Literature

- X: polytope
- V_X : vertices of X

$$\max_{x \in V_X} f(x) := a'x + g(c'x)$$

• Maximization of a submodular function

Literature

- X: polytope
- V_X : vertices of X

$$\max_{x \in V_X} f(x) := a'x + g(c'x)$$

• Maximization of a submodular function

Greedy algorithm

- 0.63-approx. for cardinality constraint (Nemhauser et al. 1978)
- 0.5-approx. for matroid polytopes (Fisher et al. 1978)

• Other approaches

- 0.63-approx. for matroids (Calinescu et al. 2011). Complexity: $\tilde{O}(n^8)$
- (0.63ϵ) -approx. for down-monotone polytopes (Chekuri et al. 2014). Complexity depends on X, requires ellipsoid method

Maximizing utility functions

- Problem statement
- Literature

Approximation algorithm

- Description
- Approximation ratio
- Computations
- Study of conic quadratic constraints
- 3) Conclusions & future work

Algorithm

Feasible region

Algorithm

Feasible region

 Ind x₀ ∈ arg max a'x + g(c'x) x∈X
 x*: optimal extreme point to

max
$$a'x$$

s.t. $c'x = c'x_0$
 $x \in X$

Algorithm

Feasible region

s.t.
$$c'x = c'x_0$$

 $x \in X$

Prop: x^* lies on an edge of X

Algorithm

Feasible region

 Ind x₀ ∈ arg max a'x + g(c'x) x∈X
 x*: optimal extreme point to

$$\begin{array}{l} \max a'x\\ \text{s.t. } c'x = c'x_0\\ x \in X \end{array}$$

Prop: x^* lies on an edge of X

- **3** Two vertices x_1 and x_2 on edge
- **return** arg max_{$x_i} f(x_i)$ </sub>

Approximation ratio

- x₁: best vertex solution
- *x*^{*}: optimal solution of relaxation
 ⇒ *f*(*x*^{*}) is an upper bound on the optimal value

Optimality gap:

$$\Delta = \frac{f(x^*) - f(x_1)}{f(x_1)}$$

Approximation ratio:

$$\frac{1}{1+\Delta}$$

Approximation ratios

Proposition

If g is the square root function, then the algorithm is a 0.8-approximation

- Improvement over previous 0.63-approximations (for simple regions)
- Valid for any polytope (e.g. paths)

Approximation ratios

Proposition

If g is the square root function, then the algorithm is a 0.8-approximation

- Improvement over previous 0.63-approximations (for simple regions)
- Valid for any polytope (e.g. paths)

Proposition

If g is monotone, then the algorithm is a 0.5-approximation

- Same ratio as greedy algorithm (for matroid polytopes)
- Valid for any polytope (e.g. assignment)

Maximizing utility functions

- Problem statement
- Literature
- Approximation algorithm
- Computations

2 Study of conic quadratic constraints

3 Conclusions & future work

PERT

- Det: traditional PERT method. Complexity: O(|A|)
- VaR: VaR critical path. Complexity: $O(|A| \log \frac{1}{\epsilon})$
- Measure the error between estimated VaR and true VaR of the project
- Averages of 15 instances, $200 \le |A| \le 1000$

Confidence	Erroi	: (%)	Improvement (%)		
level (%)	Det	VaR	Improvement (%)		
90.0	31.7	22.7	28.4		
97.5	25.7	12.6	51.0		
99.0	24.6	10.6	56.9		

Solution times < 1s

Assortment optimization

- $n \times n$ assignments
- Approximation algorithm complexity $O(n^3 \log \frac{1}{\epsilon})$
- Optimality gap $\Delta = \frac{f_{\rm relax}^* f_{\rm vertex}^*}{f_{\rm vertex}^*}$
- Averages over five instances

n	3	10	100	1000	
Time (ms)	1	2	66	2,892	
Δ (%)	0.24	0.01	0.00	0.00	

Agenda

2 Study of conic quadratic constraints

- Introduction
- Valid inequalities
- Computations

Agenda

Study of conic quadratic constraints Introduction

- Valid inequalities
- Computations

3 Conclusions & future work

Introduction

Problem statement

- $P \subseteq \{0,1\}^n \times \mathbb{R}^m$: feasible region
- \tilde{u} : costs (uncertain)

•
$$ilde{u} \sim \mathcal{N}(a, c)$$
, or
• $ilde{u} \in \left\{ u \in \mathbb{R}^{n+m} : \sum_{i=1}^{n+m} \frac{(u_i - a_i)^2}{c_i} \leq 1 \right\}$

Minimize "worst case" scenario

$$\min a'x + \sqrt{\sum_{i=1}^{n+m} c_i x_i^2}$$

s.t.
$$x \in P$$

•
$$P \subseteq \{0,1\}^n imes \mathbb{R}^m$$
: feasible region

• \tilde{u} : costs (uncertain)

•
$$\tilde{u} \sim \mathcal{N}(a, c)$$
, or
• $\tilde{u} \in \left\{ u \in \mathbb{R}^{n+m} : \sum_{i=1}^{n+m} \frac{(u_i - a_i)^2}{c_i} \leq 1 \right\}$

Minimize "worst case" scenario

min
$$a'x + z$$

s.t.
$$\sqrt{\sum_{i=1}^{n+m} c_i x_i^2} \le z$$

 $x \in P, z \in \mathbb{R}_+$

•
$$P \subseteq \{0,1\}^n imes \mathbb{R}^m$$
: feasible region

• \tilde{u} : costs (uncertain)

•
$$\tilde{u} \sim \mathcal{N}(a, c)$$
, or
• $\tilde{u} \in \left\{ u \in \mathbb{R}^{n+m} : \sum_{i=1}^{n+m} \frac{(u_i - a_i)^2}{c_i} \leq 1 \right\}$

Minimize "worst case" scenario

min
$$a'x + z$$

s.t.
$$\sqrt{\sum_{i=1}^{n+m} c_i x_i^2} \le z$$

 $x \in P, z \in \mathbb{R}_+$

Agenda

2 Study of conic quadratic constraints

Introduction

Valid inequalities

- Pure-binary case
- Mixed-binary case
- Computations

$$\mathcal{K} = \left\{ (x,z) \in \{0,1\}^n imes \mathbb{R}_+ : \sqrt{\sum_{i=1}^n c_i x_i^2} \le z \right\}$$

$$\mathcal{K} = \left\{ (x,z) \in \{0,1\}^n imes \mathbb{R}_+ : \sqrt{c'x} \le z
ight\}$$

$$\mathcal{K} = \left\{ (x,z) \in \{0,1\}^n imes \mathbb{R}_+ : \sqrt{c'x} \le z
ight\}$$

- $f: \{0,1\}^n \to \mathbb{R}$ with $f(x) = \sqrt{c'x}$ is submodular
- *M* is polymatroid associated with *f*

$$M := \left\{ \pi \in \mathbb{R}^n_+ : \pi' x \le f(x), \ \forall x \in \{0,1\}^n \right\}$$

- Π : set of extreme points of M
- Edmonds (1970) gave characterization of Π

Theorem (Atamtürk and Narayanan 2008)

$$conv(K) = egin{cases} \pi' x \leq z & orall \pi \in \Pi \ 0 \leq x_i \leq 1 & i = 1, \dots, n \end{cases}$$

Theorem (Atamtürk and Narayanan 2008)

$$\mathit{conv}(\mathcal{K}) = egin{cases} \pi' x \leq z & orall \pi \in \Pi \ 0 \leq x_i \leq 1 & i = 1, \dots, n \end{cases}$$

Separation problem: given fractional \bar{x} , find best inequality to add:

 $\max_{\pi\in\Pi}\pi'\bar{x}$

Can be solved in $O(n \log n)$ (Edmonds 1970)

Theorem (Atamtürk and Narayanan 2008)

$$\mathit{conv}(\mathcal{K}) = egin{cases} \pi' x \leq z & orall \pi \in \Pi \ 0 \leq x_i \leq 1 & i = 1, \dots, n \end{cases}$$

Separation problem: given fractional \bar{x} , find best inequality to add:

$$\max_{\pi\in\Pi}\pi'ar{x}$$

Can be solved in $O(n \log n)$ (Edmonds 1970)

- Pure-binary case completely understood
- Mixed-binary case poorly understood

$$H = \left\{ (x, y, z) \in \{0, 1\}^n \times \mathbb{R}^{m+1}_+ : \sqrt{c'x + \sum_{i=1}^m d_i y_i^2} \le z \right\}$$

$$H = \left\{ (x, y, z) \in \{0, 1\}^n \times \mathbb{R}^{m+1}_+ : \sqrt{c'x + \sum_{i=1}^m d_i y_i^2} \le z \right\}$$

• Let Π extreme points of polymatroid associated with $f(x) = \sqrt{c'x}$

Valid inequalities

Conic constraints with continuous variables

$$H = \left\{ (x, y, z) \in \{0, 1\}^n \times \mathbb{R}^{m+1}_+ : \sqrt{c'x + \sum_{i=1}^m d_i y_i^2} \le z \right\}$$

- Let Π extreme points of polymatroid associated with $f(x) = \sqrt{c'x}$
- Polymatroid inequalities:

$$\sqrt{(\pi' x)^2 + \sum_{i=1}^m d_i y_i^2} \le z, \quad orall \pi \in \Pi$$

Valid inequalities

Conic constraints with continuous variables

$$H = \left\{ (x, y, z) \in \{0, 1\}^n \times \mathbb{R}^{m+1}_+ : \sqrt{c'x + \sum_{i=1}^m d_i y_i^2} \le z \right\}$$

- Let Π extreme points of polymatroid associated with $f(x) = \sqrt{c'x}$
- Polymatroid inequalities:

$$\sqrt{(\pi' x)^2 + \sum_{i=1}^m d_i y_i^2} \le z, \quad \forall \pi \in \Pi$$

Theorem (Convex hull of H)

Inequalities

$$\sqrt{(\pi' x)^2 + \sum_{i=1}^m d_i y_i^2} \leq z, \quad \pi \in \Pi$$

and bound constraints completely describe conv(H)

Theorem (Convex hull of H)

Inequalities

$$\sqrt{(\pi'x)^2+\sum_{i=1}^m d_i y_i^2} \leq z, \quad \pi\in\Pi$$

and bound constraints completely describe conv(H)

The separation problem can be solved $O(n \log n)$

Theorem (Convex hull of H)

Inequalities

$$\sqrt{(\pi' x)^2 + \sum_{i=1}^m d_i y_i^2} \leq z, \quad \pi \in \Pi$$

and bound constraints completely describe conv(H)

The separation problem can be solved $O(n \log n)$

Other contributions

• Bounded continuous variables

Theorem (Convex hull of H)

Inequalities

$$\sqrt{(\pi'x)^2+\sum_{i=1}^m d_iy_i^2}\leq z, \quad \pi\in\Pi$$

and bound constraints completely describe conv(H)

The separation problem can be solved $O(n \log n)$

Other contributions

- Bounded continuous variables
- Exploit additional constraints to get stronger inequalities

Computations

Agenda

2

Study of conic quadratic constraints

- Introduction
- Valid inequalities
- Computations
 - General covariance matrix
 - Assortment optimization with mixed multinomial logit model

Conclusions & future work

• $C \succeq 0$: covariance matrix

min
$$a'x + \sqrt{x'Cx}$$

s.t.
$$\sum_{i=1}^{n} x_i = k$$
$$x \in \{0, 1\}^n$$

• $C \succeq 0$: covariance matrix

min
$$a'x + \sqrt{\sum_{i=1}^{n} D_{ii}x_i + x'Fx}$$

s.t. $\sum_{i=1}^{n} x_i = k$
 $x \in \{0, 1\}^n$

- Decompose C := D + F
 - $D \succeq 0, F \succeq 0$
 - D is diagonal

• $C \succeq 0$: covariance matrix

min
$$a'x + \sqrt{\sum_{i=1}^{n} D_{ii}x_i + y^2}$$

s.t. $\sum_{i=1}^{n} x_i = k$
 $\sqrt{x'Fx} \le y$
 $x \in \{0,1\}^n, y \in \mathbb{R}_+$

• Decompose C := D + F

- $D \succeq 0, F \succeq 0$
- D is diagonal
- 2 Introduce variable $y := \sqrt{x'Fx}$

• $C \succeq 0$: covariance matrix

min
$$a'x + \sqrt{\sum_{i=1}^{n} D_{ii}x_i + y^2}$$

s.t. $\sum_{i=1}^{n} x_i = k$
 $\sqrt{x'Fx} \le y$
 $x \in \{0,1\}^n, y \in \mathbb{R}_+$

• Decompose C := D + F

- $D \succeq 0, F \succeq 0$
- D is diagonal
- 2 Introduce variable $y := \sqrt{x'Fx}$

Computational experiments - General covariance

• *n* = 200

• CPLEX 12.6.2, two hour time limit, average over 15 instances

diag k		default cplex			cplex+cuts			cnoodun
ulag n	rimp	time	egap	rimp	time	egap	speedup	
	20	19.7	720	0.0	55.6	109	0.0	×7
low	30	12.0	399	0.0	56.2	18	0.0	×22
	40	18.9	187	0.0	54.2	9	0.0	×21
	20	14.5	4,034	0.9	51.0	2,650	0.2	×2+
high	30	13.4	2,014	0.2	74.8	187	0.0	$\times 10+$
	40	21.8	1,128	0.1	74.0	15	0.0	$\times 75+$
Avera	age	16.7	1,414	0.2	61.0	498	0.0	

Computational experiments - General covariance

Assortment optimization with mixed-MNL

- N: set of products
- M: set of customer classes
- $c_j, d_j \in \mathbb{R}^N_+$: parameters of MNL corresponding to class $j \in M$

$$\max \sum_{j \in M} \frac{c'_j x}{1 + d'_j x}$$

s.t.
$$\sum_{i \in N} x_i \le k$$
$$x \in \{0, 1\}^N$$

• \mathcal{NP} -hard

- Hard to approximate with algorithm polynomial in |M|
- Can be put in conic form

Computational experiments

• |N| = 200

- Classic MILP formulation vs. conic formulation with cuts
- CPLEX 12.6.2, two hour limit, averages over five instances

<i>M</i> <i>k</i>	k	cplex(MILP)			cplex(conic)+cuts			anoodun
	n	rimp	time	egap	rimp	time	egap	speedup
	10	0.0	7,200	25.9	100.0	3	0.0	×2,400+
4	20	0.0	7,200	14.7	100.0	8	0.0	$\times 900+$
	40	0.0	7,200	2.7	100.0	81	0.0	×90+
	10	0.0	7,200	45.2	99.9	130	0.0	$\times 55+$
20	20	0.0	7,200	18.3	100.0	159	0.0	\times 45+
	40	0.0	7,200	3.1	100.0	132	0.0	$\times 55+$
Aver	age	0.0	7,200	18.3	100.0	86	0.0	

Study of conic quadratic constraints

Conclusions

• Nonlinear utility functions arise when modeling uncertainty

• Current approaches for discrete nonlinear optimization are limited

Possible to have efficient algorithms

Future work

Extensions of polymatroid inequalities

- Polymatroid inequalities are "strong" for some feasible regions
 - Generalized upper bounds
 - Path constraints

- Polymatroid inequalities can be improved for other feasible regions
 - Cardinality constraint
 - Knapsack constraint

Future work

Other mixed-binary structures $x \in \{0,1\}^n, y \in \mathbb{R}^m$

• min
$$-\mu'y + \sqrt{y'\Sigma y}$$
 s.t $\sum_{i=1}^n y_i = 1$, $\sum_{i=1}^n x_i \le k$, $0 \le y_i \le x_i$

- Fixed charge structure
- Application: Portfolio optimization

• min
$$f(y)$$
 s.t $-Mx_i \le y_i \le Mx_i, \sum_{i=1}^n x_i \le k$

- Sparsity
- Application: Statistics (e.g. best subset regression)

Thank you!