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Problem statement

g : R+ → R+: monotone concave function

a, c ∈ Rn
+: objective vectors

max a′x + g(c ′x)

s.t. x is a vertex of a polytope

max
x vertex

a′x → linear optimization

max
x in polytope

a′x + g(c ′x)→ convex optimization
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Maximizing utility functions Problem statement

Project Evaluation and Review Technique (PERT)

Project composed of many individual activities

Each activity requires a given amount of time to complete

Precedence relations between activities

Interesting questions

What is the duration of the project?

Which are the critical activities?

Activities more likely to cause delays in the project
Activities that should be monitored carefully
Activities where additional resources should be allocated
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Project Evaluation and Review Technique (PERT)

A: set of activities required to complete a project

G : DAG encoding precedence relations

d̃i ∼ N (µi , σ
2
i ): duration of activity i ∈ A (independent)
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Maximizing utility functions Problem statement

Project Evaluation and Review Technique (PERT)

Traditional PERT (e.g. Nahmias 2001, Chapter 9)

Find path with largest expected duration

Estimate project duration using this path
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Maximizing utility functions Problem statement

Value-at-Risk

For d̃ ∼ N (µ, σ2)

VaRα(d̃) := sup
{
k ∈ R : Pr(d̃ ≤ k) ≤ α

}

=µ+ Φ−1(α)σ

Φ: CDF of the standard normal distribution
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Maximizing utility functions Problem statement

VaRα-critical path

Path with maximum Value-at-Risk (VaR) at confidence level α

xa: 1 if activity a ∈ A belongs to the critical path, 0 otherwise

δ+(i), δ−(i): incoming and outgoing arcs to node i

max
∑
a∈A

µaxa + Φ−1(α)

√∑
a∈A

σ2
axa

2

s.t.
∑

a∈δ+(i)

xa −
∑

a∈δ−(i)

xa =


−1 if i = s

1 if i = t

0 otherwise

xa ∈ {0, 1}, ∀a ∈ A
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s.t. x is a vertex of the path polytope

∑
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−1 if i = s
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Maximizing utility functions Problem statement

Assortment optimization

N: set of ads

M: set of advertising spots

aij : profit from displaying ad i ∈ N in spot j ∈ M

β: fixed profit per click

Goal: choose assortment S ⊆ N ×M maximizing profit

Assortment: assignment of ads to advertising spots



Maximizing utility functions Problem statement

Assortment optimization

Multinomial logit (MNL) discrete choice model

Customers are utility maximizers

µij : estimated customer utility for ad i in spot j

No-click choice has zero estimated utility

Probability of clicking ad i in spot j given assortment S ⊆ N ×M

Pij(S) =
eµij

1 +
∑

(k,`)∈S
eµk`



Maximizing utility functions Problem statement

Assortment optimization

xij : 1 if ad i is assigned to spot j , 0 otherwise

max
∑
i∈N

∑
j∈M

aijxij + β

∑
i∈N

∑
j∈M eµij xij

1 +
∑

i∈N
∑

j∈M eµij xij

s.t.
∑
i∈N

xij ≤ 1, ∀j ∈ M (spots contain at most one ad)∑
j∈M

xij ≤ 1, ∀i ∈ N (ads are displayed at most once)

xij ∈ {0, 1}, ∀i ∈ N, ∀j ∈ M

cij := eµij , g(c ′x) = β c ′x
1+c ′x

Feasible region is the set of vertices of assignment polytope
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Maximizing utility functions Problem statement

Other applications

Reliability of a parallel system

Maximize tradeoff between benefit and reliability

Robust conic quadratic optimization

Minimize Value-at-Risk with discrete uncertainty set

Multi-armed bandit

Exponential number of arms characterized by combinatorial set
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Literature

X : polytope

VX : vertices of X

max
x∈VX

f (x) := a′x + g(c ′x)

Maximization of a submodular function

Greedy algorithm
0.63-approx. for cardinality constraint (Nemhauser et al. 1978)
0.5-approx. for matroid polytopes (Fisher et al. 1978)

Other approaches
0.63-approx. for matroids (Calinescu et al. 2011). Complexity: Õ(n8)
(0.63− ε)-approx. for down-monotone polytopes (Chekuri et al. 2014).
Complexity depends on X , requires ellipsoid method



Maximizing utility functions Literature

Literature

X : polytope

VX : vertices of X

max
x∈VX

f (x) := a′x + g(c ′x)

Maximization of a submodular function

Greedy algorithm
0.63-approx. for cardinality constraint (Nemhauser et al. 1978)
0.5-approx. for matroid polytopes (Fisher et al. 1978)

Other approaches
0.63-approx. for matroids (Calinescu et al. 2011). Complexity: Õ(n8)
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Maximizing utility functions Approximation algorithm

Approximation algorithm

Algorithm

1 Find x0 ∈ arg max
x∈X

a′x + g(c ′x)

2 x∗: optimal extreme point to

max a′x

s.t. c ′x = c ′x0

x ∈ X

Prop: x∗ lies on an edge of X

3 Two vertices x1 and x2 on edge

4 return arg maxxi f (xi )

Feasible region

𝑥0
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Approximation algorithm

Algorithm

1 Find x0 ∈ arg max
x∈X
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x ∈ X
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Maximizing utility functions Approximation algorithm

Approximation ratio

x1: best vertex solution

x∗: optimal solution of relaxation

=⇒ f (x∗) is an upper bound on the optimal value

Optimality gap:

∆ =
f (x∗)− f (x1)

f (x1)

Approximation ratio:
1

1 + ∆



Maximizing utility functions Approximation algorithm

Approximation ratios

Proposition

If g is the square root function, then the algorithm is a 0.8-approximation

Improvement over previous 0.63-approximations (for simple regions)

Valid for any polytope (e.g. paths)

Proposition

If g is monotone, then the algorithm is a 0.5-approximation

Same ratio as greedy algorithm (for matroid polytopes)

Valid for any polytope (e.g. assignment)
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Maximizing utility functions Computations

PERT

Det: traditional PERT method. Complexity: O(|A|)
VaR: VaR critical path. Complexity: O(|A| log 1

ε )

Measure the error between estimated VaR and true VaR of the project

Averages of 15 instances, 200 ≤ |A| ≤ 1000

Confidence Error (%)
Improvement (%)

level (%) Det VaR

90.0 31.7 22.7 28.4

97.5 25.7 12.6 51.0

99.0 24.6 10.6 56.9

Solution times < 1s



Maximizing utility functions Computations

Assortment optimization

n × n assignments

Approximation algorithm complexity O(n3 log 1
ε )

Optimality gap ∆ =
f ∗relax−f

∗
vertex

f ∗vertex

Averages over five instances

n 3 10 100 1000

Time (ms) 1 2 66 2,892

∆ (%) 0.24 0.01 0.00 0.00
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Conic constraints Introduction

Problem statement

P ⊆ {0, 1}n × Rm: feasible region

ũ: costs (uncertain)

ũ ∼ N (a, c), or

ũ ∈
{
u ∈ Rn+m :

n+m∑
i=1

(ui−ai )
2

ci
≤ 1

}
Minimize “worst case” scenario

min a′x +

√√√√n+m∑
i=1

cix2
i

s.t. x ∈ P

x ∈ P, z ∈ R+
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Conic constraints Valid inequalities

Pure-binary case

K =

(x , z) ∈ {0, 1}n × R+ :

√√√√ n∑
i=1

cix2
i ≤ z



f : {0, 1}n → R with f (x) =
√
c ′x is submodular

M is polymatroid associated with f

M :=
{
π ∈ Rn

+ : π′x ≤ f (x), ∀x ∈ {0, 1}n
}

Π: set of extreme points of M

Edmonds (1970) gave characterization of Π
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Pure-binary case

Theorem (Atamtürk and Narayanan 2008)

conv(K ) =

π′x ≤ z ∀π ∈ Π

0 ≤ xi ≤ 1 i = 1, . . . , n

Separation problem: given fractional x̄ , find best inequality to add:

max
π∈Π

π′x̄

Can be solved in O(n log n) (Edmonds 1970)

Pure-binary case completely understood

Mixed-binary case poorly understood
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Conic constraints with continuous variables

H =

(x , y , z) ∈ {0, 1}n × Rm+1
+ :

√√√√c ′x +
m∑
i=1

diy2
i ≤ z



Let Π extreme points of polymatroid associated with f (x) =
√
c ′x

Polymatroid inequalities:√√√√(π′x)2 +
m∑
i=1

diy2
i ≤ z , ∀π ∈ Π
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Conic constraints with continuous variables

Theorem (Convex hull of H)

Inequalities √√√√(π′x)2 +
m∑
i=1

diy2
i ≤ z , π ∈ Π

and bound constraints completely describe conv(H)

The separation problem can be solved O(n log n)

Other contributions

Bounded continuous variables

Exploit additional constraints to get stronger inequalities
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Conic constraints Computations

General covariance matrix

C � 0: covariance matrix

min a′x +
√
x ′Cx

s.t.
n∑

i=1

xi = k

x ∈ {0, 1}n

, y ∈ R+

1 Decompose C := D + F

D � 0,F � 0
D is diagonal

2 Introduce variable y :=
√
x ′Fx
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Conic constraints Computations

Computational experiments - General covariance

n = 200

CPLEX 12.6.2, two hour time limit, average over 15 instances

diag k
default cplex cplex+cuts

speedup
rimp time egap rimp time egap

low
20 19.7 720 0.0 55.6 109 0.0 ×7
30 12.0 399 0.0 56.2 18 0.0 ×22
40 18.9 187 0.0 54.2 9 0.0 ×21

high
20 14.5 4,034 0.9 51.0 2,650 0.2 ×2+
30 13.4 2,014 0.2 74.8 187 0.0 ×10+
40 21.8 1,128 0.1 74.0 15 0.0 ×75+

Average 16.7 1,414 0.2 61.0 498 0.0



Conic constraints Computations

Computational experiments - General covariance
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Conic constraints Computations

Assortment optimization with mixed-MNL

N: set of products

M: set of customer classes

cj , dj ∈ RN
+: parameters of MNL corresponding to class j ∈ M

max
∑
j∈M

c ′jx

1 + d ′j x

s.t.
∑
i∈N

xi ≤ k

x ∈ {0, 1}N

NP-hard

Hard to approximate with algorithm polynomial in |M|
Can be put in conic form



Conic constraints Computations

Computational experiments

|N| = 200

Classic MILP formulation vs. conic formulation with cuts

CPLEX 12.6.2, two hour limit, averages over five instances

|M| k
cplex(MILP) cplex(conic)+cuts

speedup
rimp time egap rimp time egap

4
10 0.0 7,200 25.9 100.0 3 0.0 ×2,400+
20 0.0 7,200 14.7 100.0 8 0.0 ×900+
40 0.0 7,200 2.7 100.0 81 0.0 ×90+

20
10 0.0 7,200 45.2 99.9 130 0.0 ×55+
20 0.0 7,200 18.3 100.0 159 0.0 ×45+
40 0.0 7,200 3.1 100.0 132 0.0 ×55+

Average 0.0 7,200 18.3 100.0 86 0.0
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Conclusions

Nonlinear utility functions arise when modeling uncertainty

Current approaches for discrete nonlinear optimization are limited

Possible to have efficient algorithms
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Future work

Extensions of polymatroid inequalities

Polymatroid inequalities are “strong” for some feasible regions

Generalized upper bounds
Path constraints

Polymatroid inequalities can be improved for other feasible regions

Cardinality constraint
Knapsack constraint
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Future work

Other mixed-binary structures x ∈ {0, 1}n, y ∈ Rm

min−µ′y +
√
y ′Σy s.t

n∑
i=1

yi = 1,
n∑

i=1
xi ≤ k , 0 ≤ yi ≤ xi

Fixed charge structure
Application: Portfolio optimization

min f (y) s.t −Mxi ≤ yi ≤ Mxi ,
∑n

i=1 xi ≤ k

Sparsity
Application: Statistics (e.g. best subset regression)
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Thank you!
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