Numu CC Xsec Mock Data Challenge

Enrique Arrieta Díaz

Quantil Meeting

5/4/2017

INTRODUCTION

This is an analysis done for the NOvA experiment with the purpose of testing a technique developed to measure a physical property called:

Cross Section

- How often an interaction between particles occurs
- Neutrinos with the materials of the NOvA detectors
- The current measurements have large uncertainty ~20%
- NOvA should present results with uncertainty ~10%
- Useful to test current competing theoretical models describing the interactions
- Neutrinos are fundamental particles, i.e. without internal structure
 - Electric charge = 0
 - 10¹⁵ neutrinos go through your bodies each second, constantly
 - Most of them produced at the Sun, others produced in the atmosphere by cosmic rays
 - Only 2 in your lifetime will interact with your bodies
 - Extremely tough to catch, therefore, extremely tough to detect
- Brief introduction of the NOvA detectors
- Very little physics
- Focus on the analysis technique

- NOvA simulates the entire scope of the experiment in order to:
 - Develop analysis algorithms
 - Develop particle and event identification algorithms
 - Calibration
 - Detectors performance and capabilities
 - Physics, how the interactions between neutrinos and matter occur
 - Simulators (Monte Carlo)

matter (and vacuum)

- GENIE: Simulates the physics of the interactions, i.e. what happens at the interaction point
- Simulation chain:
 - Entire process of propagation of neutrinos from source to detector
 - A neutrino interaction occurs inside the detectors
 - Every physical property of the interaction is known (True information)
 - All the reconstruction algorithms are applied to the Monte Carlo simulated data
 - Construction of hit clusters
 - Construction of tracks from hits
 - Particle identification
 - Energy estimation

NOvA "cheats" by using the simulated data to know exactly what happened in an interaction in order to develop and test various analysis algorithms

GEANT4: Simulates how the interactions between particles and matter propagate through

Each colored dot represents a single cell 200 400 1000 1200 1400 600 800 1600 200 100 Single Cell Horizontal x (cm) Plane **Top View** 0 To APD Readout -100Scintillation Ligh -288Particle Trajector 100 Waveshift Fiber Loo y (cm) **Side View** Vertical 3.87 cm 6 c -100-2001600 z (cm) 200 400 600 800 1000 1200 1400 0 NOvA - FNAL E929 $\lim_{t \to 0^2} \frac{10^2}{10}$ $\lim_{t \to 0} \frac{10^2}{10}$ Run: 10768 / 6 الشهيرية بالإخالات Event: 3 / --UTC Tue Feb 17, 2015 0 10 10^{2} 10^{3} 01:59:1.015000000 t (µsec) q (ADC)

Concept

Brief introduction to NOvA

Principle

- Spectra from simulation
- True: All interactions occurring inside the detector
- Reconstructed: All interactions detected by NOvA's analysis algorithms

Sample Event

NOvA v_µ Charged-current candidate

Data Base

5/4/2017

E. Arrieta Díaz, Quantil Meeting

11

Selection Cuts

- Fiducial Volume, for vertex containment:
 - → -176 cm < X < 177 cm</p>
 - → -172 cm < Y < 179 cm</p>
 - ♦ 25 cm < Z < 1150 cm</p>

Quality:

- slc.nhit > 20
- slc.ncontplanes > 4
- sel.remid.pid > 0
- energy.numusimp.trkccE > 0

Containment, CAFAna:

trk.nkalman > sel.remid.bestidx
Run: 12203/15

- slc.ncellsfromedge > 4
- slc.firstplane > 4
- ♦slc.lastplane < 212</p>
- sel.contain.kalfwdcellnd > 4
- sel.contain.kalbakcellnd > 8
- trk.kalman[sr->.remid.bestidx].stop.fZ < 1275 || sel.contain.kalyposattrans < 55</p>
- energy.numusimp.ndhadcalcatE + energy.numusimp.ndhadcaltranE) < 0.03</p>
- RemID Score cut applied

- To identify muons, NOvA uses a set of variables
 - The main one is muon energy deposition per unit length: dE/dx
 - Muons track length
 - Number of consecutive planes with hits
 - A few other

- Using a k-nearest neighbor (KNN) algorithm and a neural network, NOvA developed a muon identification (ID) algorithm:
 - Muon ID produces a score from 0 to 1
 - Higher scores mean event is very likely to have a muon
 - Low scores mean event is likely to not have a muon, i.e., event is background

REMID CALIBRATION

- $FOM = \frac{S}{\sqrt{S+B}}$, Figure Of Merit
- Each CC interaction is S
- B: NC + μ^+ + e, for each S
 - µ⁺ events are not rejected by the RemID

cut

In the to-do list

FOM_{QE} = 651, at RemID Score = 0.8305
 FOM_{Res} = 781, at RemID Score = 0.5445
 FOM_{DIS} = 460, at RemID Score = 0.3575
 FOM_{Coh} = 92, at RemID Score = 0.9845
 FOM_{MEC} = 400, at RemID Score = 0.9075

FOM = 1292, at RemID Score = 0.3

- RemID Score = 0.3
- Everything with RemID Score > 0.3 is a μ^{-}

REMID CALIBRATION

After applying the RemID cut, the tracks passing the cut are presented:

90.4% CC in Signal

Signal:	
Selected events after	
reconstruction	

Discriminated by CC type (Truth)

◆ BKG:
Selected events after
reconstruction
 Discriminated by NC, EM & μ⁺

	1 21	1+h	.)
5/4/2	201	7	

	QE	Res	DIS	Coh	MEC
CC %	27.7	40.6	18.1	1.6	12
Signal %	25	36.7	16.4	1.4	10.9

		Ç	9.6% BKG	i în Signal
	NC	μ+	e⁻	e *
BKG %	70.7	26.2	2.8	0.3
Signal %	6.7	2.5	0.3	0.1

μ ΜΟΜΕΝΤυΜ

True vs Reco

♦ Reconstructed µ momentum up to 5 GeV/c

- True µ momentum goes up to 15 GeV/c
 This is mostly for low reco momentum
- 5% blue band in Reco / True ratio agrees with low BKG region
- Peak in Reco at 0.5 GeV/c mostly from BKG

μ ΜΟΜΕΝΤυΜ

5/4/2017

True vs Reco

The existence of a hadronic system in the interaction:

Res & DIS, also contributes to the tale on True momentum for low Reco momentum

 The best RemID Score track is not the muon,

μ **MOMENTUM**

Resolution

Muon momentum resolution is very good for:

- ◆ 0.7 GeV/c < P < 2.1 GeV/c</p>
- DIS is ~28% worse on average

P (GeV/c)	0.5	1.0	1.5	2.0	2.5
Resolution %	7.5	3.3	3.4	3.7	4.0

- With this momentum resolution, bins of 0.1 GeV/c are set for use
- The BKG for P = 0.5 GeV/c is 18%, and goes down to 6% for P = 0.8 GeV/c

• 16 bins from 0.9 GeV/c to 2.5 GeV/c are reasonable for a double differential cross

section measurement with 5% BKG 5/4/2017 E. Arrieta Díaz, Quantil Meeting

µ DIRECTION

True vs Reco

- True Cos θ goes from -1 to 1: 1.5% of tracks with True Cos $\theta < 0$
- 10% blue band in Reco / True ratio agrees with low BKG region (67% of Reco here)
- No cuts in muon momentum yet

µ DIRECTION

True vs Reco

 Muon misidentification in: Res & DIS due to a strong

hadronic system manifests in two places:

- Vertical band at Reco Cos $\theta \simeq 1$
- Horizontal band at True Cos $\theta \simeq 1$ (less freq.)

μ **DIRECTION**

Resolution

Muon momentum resolution is very good for:

a 0.75 < Cos A < 1	Cos θ	0.95	0.90	0.85	0.75	0.50
 DIS is ~125% worse on average 	Resolution %	1.5	2.5	3.4	5.2	15

With this direction resolution the following binning is set for use:

- ◆ 5 bins of 0.03: 0.85 < Cos θ < 1</p>
- 2 bins of 0.03: 0.75 < Cos θ < 0.85</p>
- 1 bin: 0 < Cos θ < 0.75

8 bins in Cos θ for a double differential cross section measurement

VARIABLES

Reconstructed

• On the left, the reconstructed variables: Momentum vs Cos θ , signal 4×10^{20} POT

- On the right, the reconstructed variables of the BKG interactions
- The CC portion of the signal is presented below
 - Note that the colored scales are different

VARIABLES

BKG in Signal

Cos θ GeV/c	0 - 0.75	0.75 - 0.80	0.80 - 0.85	0.85 - 0.88	0.88 - 0.91	0.91 - 0.94	0.94 - 0.97	0.97 - 1.0
2.5 - 2.4	8.3	0.0	0.0	0.0	0.0	7.5	5.0	4.6
2.4 - 2.3	17.6	0.0	0.0	0.0	0.0	4.9	2.8	4.4
2.3 – 2.2	4.3	0.0	33.3	0.0	6.7	4.1	2.8	3.6
2.2 - 2.1	4.2	0.0	0.0	0.0	5.3	2.6	2.5	3.3
2.1 - 2.0	0.0	0.0	0.0	0.0	1.8	2.4	2.1	2.8
2.0 - 1.9	5.3	25.0	10.0	2.3	2.5	1.6	1.9	2.6
1.9 - 1.8	2.2	0.0	4.3	0.0	1.2	1.7	2.1	2.5
1.8 - 1.7	0.0	50.0	1.7	0.6	1.1	1.7	1.8	2.4
1.7 – 1.6	3.1	0.0	0.0	0.6	0.6	1.8	1.7	2.5
1.6 - 1.5	3.1	0.0	1.4	0.7	1.5	1.8	2.0	2.5
1.5 - 1.4	1.1	1.1	1.6	1.7	1.6	1.7	1.9	2.7
1.4 - 1.3	2.9	0.7	0.6	1.2	1.5	1.7	2.0	3.1
1.3 - 1.2	4.1	1.1	1.5	1.6	1.8	1.9	2.6	3.8
1.2 - 1.1	1.7	1.9	1.7	1.8	1.7	2.5	3.2	4.5
1.1 - 1.0	2.5	2.2	1.9	2.3	2.5	3.0	3.7	5.5
1.0-0.9	1.6	1.5	2.3	2.9	2.9	3.5	5.6	7.8

Percentage (%) of BKG Per Bin

v_u FLUX

Method 1

The true neutrino energy spectrum after selection procedure

Cut off at 0.3 GeV

 If E > 5 GeV is not taken into account for low statistics, then the low E boundary is at 0.4 GeV

The integrated region is: (0.4, 5) GeV

The integrated v_µ flux is then used to calculate the double differential cross section
 5/4/2017 E. Arrieta Díaz, Quantil Meeting

FAKE DATA

Results

- Fake data sample with
 - ◆ 1.9863 × 10²⁰ POT
- Table presents candidate events minus
 BKG
 - Number of muon candidates:
 302151.9

No rock muons BKG considered

GeV/c	0 - 0.75	0.75 - 0.80	0.80 - 0.85	0.85 - 0.88	0.88 - 0.91	0.91 - 0.94	0.94 - 0.97	0.97 – 1.0
2.5 – 2.4	6.5	0.0	0.0	0.0	0.0	21.5	358.2	3484.9
2.4 – 2.3	6.5	0.0	1.0	0.0	5.0	36.0	604.1	4463.2
2.3 – 2.2	9.5	0.0	0.5	1.0	8.5	91.5	979.7	6022.9
2.2 – 2.1	8.5	1.0	1.0	5.0	25.5	196.5	1560.3	7707.2
2.1 – 2.0	13.0	2.0	2.0	12.0	76.0	377.1	2437.4	9669.3
2.0 - 1.9	29.0	-0.5	6.5	21.5	105.5	656.6	3446.1	11243.0
1.9 – 1.8	28.5	2.0	14.5	47.0	220.5	1059.2	4670.8	12846.3
1.8 - 1.7	25.0	8.5	21.5	63.5	342.0	1674.7	6036.9	13905.3
1.7 – 1.6	42.0	5.0	51.0	143.0	548.5	2205.3	7072.5	13900.9
1.6 – 1.5	38.5	22.0	106.5	248.0	987.1	2957.5	7880.8	13653.3
1.5 – 1.4	54.5	37.5	205.5	468.6	1436.2	3869.5	8213.3	12526.8
1.4 – 1.3	54.0	82.5	402.5	800.6	2071.8	4346.1	7985.9	10821.3
1.3 – 1.2	90.0	179.0	715.1	1254.7	2509.4	4729.3	7622.7	9245.5
1.2 – 1.1	179.0	403.6	1274.7	1801.3	3185.5	5062.6	7026.9	7540.4
1.1 - 1.0	452.6	816.2	2001.8	2323.0	3413.2	4777.7	5938.4	6033.9
1.0 - 0.9	1314.7	1442.2	2613.5	2648.6	3561.9	4424.3	5012.4	4650.7

TSVDUnfolding requires the following input:

- xini: true distribution
- bini: reconstructed distribution
- Adet: true vs reconstructed
- datatrue: true distribution (fake data prediction)
- data: distribution to be unfolded (from fake data)

True Distribuiton for Unfolding, CC. RemID Cut. ND MC ×10[€] 0.12 $0.75 < \cos \theta < 0.80$ 0.80 < Cos 0 < 0.85 0.85 < Cos 0 < 0.8 < Cos 0 < 0.9 $0.88 < \cos \theta < 0.9$ < Cos 0 < 0.9 0. < 0.7 80.08 Wnong 0.06 < Cos θ 0.91 0.04 0.02 50 100 2D Bin Number bini Reconstructed Distribuiton for Unfolding, CC. RemID Cut. ND MC 0.14 0.12 0.12 0.1 0.0 0.00 0.00 0.04 8 0.02 2D Bin Number Adet, RemID Cut, ND MC 150 Bin Number 100

TSVDUnfolding

6.0

⇒Ni

1, 18, 19, 36, ..., 144, 162

xini

5/4/2017

E. Arrieta Díaz, Quantil Meeting

Result

2.2%

3.6%

5.1%

4.4%

6.4%

10.3%

18.7%

35.0%

14.2%

Percentage of events

Recommended i: when $|d_i| < 1$ for the first time

i = 2, in this case

Result

- Number of muon candidates: 301897.9
- Compare to: 302151.9 from reconstruction
- ♦ A difference of: 1%

GeV/c Cos θ	0 - 0.75	0.75 - 0.80	0.80 - 0.85	0.85 - 0.88	0.88 - 0.91	0.91 - 0.94	0.94 - 0.97	0.97 - 1.0
2.5 – 2.4	0.0	0.0	1.0	0.0	6.4	53.1	595.1	3799.3
2.4 – 2.3	0.0	0.5	0.0	8.4	15.4	91.8	884.0	4947.5
2.3 – 2.2	0.0	0.0	1.0	5.9	28.3	189.0	1326.7	6257.1
2.2 - 2.1	0.0	1.5	1.5	8.4	60.5	330.4	1958.6	7790.6
2.1 - 2.0	0.0	0.5	4.5	19.3	91.2	508.0	2732.8	9603.1
2.0 - 1.9	1.5	2.0	10.4	33.7	169.1	875.6	3763.1	11172.2
1.9 – 1.8	0.5	1.0	20.3	67.9	287.1	1273.9	4907.5	12697.7
1.8 - 1.7	0.0	4.5	42.6	117.4	448.7	1801.7	5879.2	13416.5
1.7 – 1.6	1.0	11.9	90.6	194.2	714.9	2381.5	6858.7	13419.3
1.6 - 1.5	6.4	27.7	141.2	348.8	1079.3	3166.7	7549.4	12903.5
1.5 – 1.4	11.9	50.0	291.2	546.5	1532.8	3771.7	7828.1	12036.6
1.4 - 1.3	27.7	103.0	459.6	934.4	2062.7	4346.5	7892.4	10690.7
1.312	88.6	213.9	811.7	1347.1	2609.9	4717.4	7417.8	9067.8
1.2 – 1.1	189.6	424.8	1345.1	1772.1	3050.0	4810.5	6612.8	7456.9
1.1 - 1.0	492.6	909.1	2109.7	2237.3	3287.8	4518.7	5785.4	5878.8
1.0 - 0.9	1303.2	1434.9	2742.6	2500.8	3398.2	4169.9	4848.9	4547.4

In this case, Contained means within Fiducial Volume

The efficiency is: the fraction of selected events (after unfolding), A, over the events

that have the truth vertex contained within the Fiducial Volume, A + C

Efficiency Bin Number

CROSS SECTION

Results

FIG. 9. Measured cross section with shape uncertainties (error bars: internal systematics, external statistical) and fully correlated normalization uncertainty (gray band). The results from the fit to the data are compared to predictions from Nieves *et al.* without 2p2h (black dashed line), and with 2p2h (red dotted line).