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Abstract
Determining the distribution of disease prevalence among heterogeneous
populations at the national scale is fundamental for epidemiology and public health.
Here, we use a combination of methods (spatial scan statistic, time series correlation,
epidemic profile) to study measurable differences in malaria intensity by regions
and populations of Colombia. This study explores three main questions: What are
the regions of Colombia where malaria is epidemic? What are the regions and
populations in Colombia where malaria is endemic? What associations exist between
epidemic outbreaks between regions in Colombia?
Plasmodium falciparum is most prevalent in the Pacific Coast, some regions of the
Amazon Basin, and some regions of the Magdalena Basin. Plasmodium vivax is the
most prevalent parasite in Colombia, particularly in the Northern Amazon Basin, the
Caribbean, and municipalities of Sucre, Antioquia and Cordoba. Malaria has been
reported to be most common among 15-45 year old men. We find that the age-class
suffering high risk of malaria infection ranges 20 to 30 with an acute peak at 25 years
of age. Second, this pattern was not found to be generalizable across Colombian
populations, Indigenous and Afrocolombian populations experience endemic malaria
(with household transmission). Third, clusters of epidemic malaria for Plasmodium
vivax were detected across Southern Colombia including the Amazon Basin and
the Southern Pacific region. Plasmodium falciparum, was is epidemic in 13 of the
1,123 municipalities (1.2%). Some key locations act as bridges between epidemic
and endemic regions. Finally, we generate a regional classification based on intensity
and synchrony, dividing the country into epidemic areas and bridge areas.
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INTRODUCTION
Malaria in Colombia has been studied from a variety of disciplines that describe disease
patterns with dimensions such as the diversity of the vector (Rubio-Palis and Zimmerman
1997; Sáenz et al. 2001), characteristics of the parasite (Carmona-Fonseca 2004), social
phenomena affecting disease transmission (Alexander et al. 2005; Banguero 1984;
Pineda and Agudelo 2005; Arévalo-Herrera et al. 2015), and geological phenomena
(Bouma et al. 1997; Poveda et al. 2001; Gagnon et al. 2002). Mainly, national and local
contexts are well understood for a country that presents unusual diversity of environments
and social backgrounds (including vast cultural diversity), which, in turn, represents
different characteristics of malaria transmission. In contrast with Sub-Saharan Africa,
where malaria is commonly a deadly disease affecting primarily children, Colombia
is not considered particularly relevant in malarial disease studies given the relatively
low mortality when compare with Sub Saharan Africa. However, malaria in Colombia
presents certain characteristics that resemble those observed in Southeast Asia. Colombia
was one of the first countries where resistance to chloroquine-based treatment was
reported. Varied malaria intensity among segregated and diverse populations inhabiting
different and unique environments make Colombia one of the few cases where malaria
is endemic and where disease patterns are inconsistent from regionally, in contrast
to several countries that follow a consistent pattern of infection, or whose segregated
vulnerable populations do not differ in their epidemic patterns (Valero-Bernal 2006;
WHO 2013). This does not mean that other countries have a homogeneous experience of
malaria intensity across subpopulations or regions. However, disease distribution among
Colombian populations has caused the parasite to generate resistance to treatment, unlike
several other countries in the world except for South East Asia.

Malaria is a complex disease, and factors associated to disease severity and resistance
have been reported, yet genetic resistance to malaria is more understood than to any
other human disease (Hill 1992). However, the strong geographical association between
resistance to the pathogen and disease severity remains a major challenge to assess the
causality of human genetic resistance (Hill 1992). We know from evolutionary theory that
two critical factors for selection must occur: 1) a population with genetic diversity has to
exist for selection to be able to operate; 2) a differential in reproductive value of the trait
in question for adaptation to evolve. Because African populations exhibit both genetic
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diversity and experience severe malaria, genetic resistance to the pathogen appears to
have emerged independently in different foci (Greenwood et al. 1991). However, unlike
Africa, Colombia has no record of human genetic resistance to malaria. On the contrary,
the parasite appears to have developed resistance to treatment. Until recently, it was
unknown whether pathogen resistance was the result of selection of mutant strains
under drug pressure, the spread of resistant strains, or adaptation of previously sensitive
parasites (Rosario 1976). Genetic evidence suggests that resistant malaria emerged in
at least 4 different geographical foci, consistent with the history of reports of resistant
pathogens for Plasmodium falciparum in the Thailand-Cambodia border and Colombia
in the 1950s, then spreading for two decades to South America, Asia and India, and then
to Africa in Kenya and Tanzania in the late 1970s (Wellems and Plowe 2001). Resistant
Plasmodium vivax was first reported in Papua-New Guinea in 1989, it is currently present
in South East Asia, and suspected to occur in South America (Wellems and Plowe 2001).
Studies have found resistant Plasmodium vivax at a rate of 11% in representative samples
of all blood smears collected in two endemic geographical regions in Colombia: Llanos
orientales (Eastern Plains) and Urabá (Soto et al. 2001), while others have found no
evidence of resistant Plasmodium vivax forms in the Pacific Coast and the Amazon Basin
(Castillo et al. 2002). However, therapeutic failure rates of Plasmodium falciparum (for
representative samples of all blood smears collected) have been reported as high as 78%
for these same regions (Castillo et al. 2002), and 67% in Antioquia (Blair-Trujillo et al.
2002). More resent assessments of malaria prevalence in endemic areas also suggest that
uncomplicated malaria by low parasitemia is one of the biggest challenges for malaria
control strategies (Arévalo-Herrera et al. 2015; Vallejo et al. 2015), and studies indicate
that the observed differences are not attributable to human genetic traits that confer
resistance (Ortega et al. 2015).

Few studies have addressed the malarial epidemiology by regions and populations
to explore the role of malaria intensity in the emergence of resistant forms of the
parasite. However, the role of Colombia in the global epidemiological context of malaria
indicates that the country may present unique characteristics for disease transmission.
Mainly, the presence, absence, and most importantly, emergence of resistant forms of
the parasite in different regions suggests that isolated and distinct epidemic regions exist
within the national boundaries, and such characteristics may play a distinctive role in
the evolution of the parasite. Here we address the intensity of malaria by regions and
human populations in Colombia, and the degree that the epidemic characteristics between
regions affect each other.

One key aspect remains poorly understood about malaria dynamics in Colombia: how
many different epidemic regions exist, and how do subpopulations in these regions
experience malaria. During fieldwork, we interacted with local health officials who
conducted malaria prevention programs at both local and national levels. Each public
health official had knowledge and expertise about epidemic dynamics in their specific
territorial assignment. However, a lack of systematic approaches hamper the ability to
formalize such knowledge. Malaria intensity and the social aspects that condition the
transmission of the parasite drive public health interventions. However, the regional
designations are yet to be formalized based on analysis of malaria dynamics. Decisions
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about prevention strategies, and how to target the most vulnerable populations are made
based primarily on the expertise of local health officials, as indicated by the classification
by Ruiz et al. (2006); Bouma et al. (1997); Poveda et al. (2001)

Here we generate a systematic classification of the malarious regions and
subpopulations of Colombia, to characterize locations and subpopulations with
epidemiological aspects of the parasite. Here we address three basic questions
concerning/surrounding the intensity of malarial infection by ethnicity an region:

1. Is this population experiencing higher malaria intensity than other regions of the
country?

2. Is the parasite persisting endemically within this population?
3. Are the epidemic characteristics of this subpopulation affecting other

subpopulations?

Specifically, we examine five years of malarial case reports are examined for both
malaria intensity, synchrony and segregation by ethnicity. First, we employ an outbreak
detection algorithm (Kulldorf 1997) widely used (Kulldorff et al. 1998; Hjalmars et al.
1996; Burkom 2003) to identify clusters in space with outbreaks of malaria. Second,
a stepwise data visualization technique is used to represent synchronous outbreaks, to
examine areas that present similar time patterns of malarial epidemic. Finally, regional
case reports are explored with descriptive statistics to analyze the intensity of malaria
exposure by ethnicity.

BACKGROUND
From John Snow’s seminal study of cholera in London, epidemiology has been a spatial
discipline (Cameron and Jones 1983). Geographical disease patterns have been widely
described for numerous pathogens and regions. We use three methods to analyze malaria
in Colombia: disease clustering, disease visualization, and ecological analysis.

The production of good quality maps to understand and visualize risk of disease
transmission is recognized as one of the fundamental tools for malaria control strategies,
specifically, understanding the relationship between malaria endemicity and the health
impact of malaria (Snow et al. 1996). Studies suggest that annual entomological
inoculation rates (commonly computed as the product of the daily human biting rate, the
sporozoite rates from the caught mosquitoes, and the days per year, 365 (Kilama et al.
2014)) in Ghana (100-1000), Kenya (10-60) and Gambia (less than 10) are associated
to prevention of all cause childhood mortality rates by insecticide treated bed nets, with
efficacy of 17%, 33%, and 63%, respectively (Snow et al. 1996). These results suggest
that public health policies should vary according to malaria endemicity, since bed nets
have been the linchpin of malaria prevention strategies since DDT was discontinued as
a viable alternative. Yet, evidence suggests that there are several contexts in which bed
nets are not efficient (Snow et al. 1996). In locations where malaria is intense, the use of
bed nets is less efficient to prevent the burden of the disease.

Due to the scarcity of multi-sited studies across different countries, variation of the
relationship between endemicity and overall health remains unknown (Snow et al. 1996).
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However, within country variation of malaria has been subject of numerous studies. One
study that addresses such relationship is produced by Omumbo et al. (1998), using GIS
and malaria case reports to map malaria intensity in Kenya. Their results also question the
use of treated bed nets in regions where malaria is intense, because in these communities,
bednets are the most inefficient Omumbo et al. (1998).

Spatial descriptions of variation in malarial infection within countries has been
addressed using maps of risk of contracting the disease. For example, Kleinschmidt
et al. (2000) produced a more accurate visualization of risk of contracting malaria in
Mali, by combining regression analysis with “krigging” (i.e., an interpolation method
similar to smoothing fitted values) to account for local responses to environmental
conditions such as weather, population and other topographic and sociological features.
Using those methods, they are able to identify regions where the risk is higher than
represented in traditional maps (Kleinschmidt et al. 2000). A similar approach, but
based on entomological and demographic geo-coded records, is implemented with a
GIS analysis to describe local risk of infection based upon proximity to breeding sites
and human populations (Kitron et al. 1994). Beck et al. (1994) have implemented a
variation of these risk maps by integrating remote sensing data to identify locations of
high transmission based on human-vector interaction for a region in Mexico, including
variation by season.

The applicability of mobile phone data to map human mobility with disease dynamics
does pose some interesting caveats. First, the fraction of the population with high
degree of mobility remains constant in some studies, but this does not necessarily mean
that it is precisely that fraction of the population who is moving pathogens from one
place to another (Candia et al. 2008). The Nükak represent one of the most endemic
and vulnerable populations in terms of malaria persistence, and are highly mobile.
Furthermore, multi-scale network models of human mobility suggest that local migration
plays an important role in the synchronization of epidemics among subpopulations
(Balcana et al. 2009), and suggests that small populations who are highly mobile play
a fundamental role in the dispersal of epidemics.

Estimating the effect of migration on pathogen loads has been a growing interest
of epidemiologists in the past years, and multiple methods have been implemented to
address such interaction. A different data-driven approach to examine the effect of human
mobility on epidemics has been the gravity model, used to evaluate measles outbreaks,
both by age-classes and by urban and rural settings (Bharti et al. 2008; Ferrari et al.
2010a,b). The main finding of this approach was that population densities were the
main driver of outbreak seasonality across different environments (Bharti et al. 2008;
Ferrari et al. 2010a,b). Furthermore, the same group has used nighttime light imagery
to estimate the effect of changing patterns of population densities on disease outbreaks
(Bharti et al. 2011). Unfortunately, few comparative studies exist to determine which
method is more effective under which conditions and for which diseases. However, the
method of nighttime light imagery provides good estimates of mobility of populations
without access to phone services, often the most vulnerable populations in terms of
disease prevalence.
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Although the gravity model has been mostly used for directly transmitted diseases,
understanding the effect of human mobility on disease epidemics, and more generally
how disease disperses over space and time, has been one of the fundamental questions in
contemporary spatial epidemiology.

Two approaches have been used to analyze synchrony of disease outbreaks over space
and time, controlling for seasonal and environmental variables. Spectral analysis has
been used to describe the association between aggravation of asthma symptoms and
temperature or atmospheric contamination levels (Bishop 1977; Cazelles et al. 2007),
and the association between air pollution and mortality (Cazelles et al. 2007; Schwartz
1993). This technique has been used to study the effect of climatic variation on cholera
(Pascual et al. 2000, 2002), malarial epidemics (Pascual et al. 2006), and the seasonality
of sexually transmitted diseases (STDs) (Grassly et al. 2005).

Some authors suggest that these methods have limitations, because they can only
be used for time-series data in which statistical proprieties do not change over time,
yet, epidemic data are inherently complex and non-stationary (Cazelles et al. 2007).
Furthermore, evidence suggests that epidemic data characteristics do change over time
(Duncan et al. 1996; Rohani et al. 2003; Cazelles et al. 2007).

The limitations of the spectral decomposition methods led to the implementation of the
second technique that is most widespread in understanding disease dynamics over space
and time, coupled with climatic and environmental conditions from a non-stationary
perspective: wavelets, a method used to show how time-series vary as a function of time
and space (Cazelles et al. 2007, 2014).

Wavelet analysis has been used to study geographical hierarchies of measles
epidemics, and the observed effect of vaccination policies over time (Grenfell et al.
2001). Associations between dengue epidemics and El Niño Southern Oscillation
(ENSO) have also been documented using this method (Cazelles et al. 2005). Kreppel
et al. (2014) found an association between ENSO, Indian Ocean Dipole (IOD) and plague
dynamics in Madagascar, and Onozuka (2014) found similar effect of those two climatic
phenomena on infectious gastroenteritis in Japan. Morris et al. (2014) documented that
Buruli ulcer is affected by short and long rainfall patterns in French Guiana, as well
as stochastic events such as ENSO. The relationship between ENSO and cutaneous
leishmaniasis has also been documented for Costa Rica (Chaves and Pascual 2006).
José and Bishop (2003) have studied the changing patterns and seasonality of Australian
rotavirus epidemics comparing a multiplicity of methods including wavelet analysis,
and detected seasonal biannual and quinquennial periods, yet, a three year epidemic
period was also found to be dominant. Spectral analysis confirms that serotype harmonics
interact in a complex, non-linear fashion, yielding an observable overall pattern beyond
the isolated dynamics of each separate serotype, that is more than the sum of the
parts, and inherent dynamics remain unchanged but the amplitude of disease infection
is modified (José and Bishop 2003).

Spatial analysis methods have been applied in disease cluster identification. The main
approaches used are: K-cluster analysis, detects global clusters based on each case point
(Cuzick and Edwards 1990); the geographical machine (Openshaw et al. 1987) and
the scan statistic (Kulldorf 1997), work by aggregating cases in different areas and

Prepared using sagej.cls



DRAFT

Feged-Rivadeneira and Rivera 7

performing a hypothesis test based on a Bernoulli null model, with the advantageous
difference for the scan statistic that it can perform multiple tests simultaneously. We
present an implementation of the scan statistic in this case study. Small, isolated
outbreaks of malaria in specific communities have been identified as “discrete mini
epidemics”, which represent disease severity by using space-time cluster identification
(Snow et al. 1993). Disease risk by geographical location has also been implemented
as simple logistic regressions that include altitude, and physical coordinates of each
individual within a case-control study (Brooker et al. 2004). The scan statistic method
has been used by Coleman et al. (2009) to identify disease clusters over space and time
in a South African region. Zhang et al. (2008) have also implemented the scan statistic
method in China to identify clusters and suggest public health resource optimization.
Faires et al. (2014) used this method to identify clusters of Clostridium difficile over
time in Ontario, Canada. Duczmal et al. (2015) implemented the scan statistic to study
Chagas’ disease in Brazil, while Occelli et al. (2014) do the same for end-stage renal
disease (ESRD) in northen France. In Virginia, the increasing burden of Lyme disease
was documented using spatiotemporal scan statistics (Li et al. 2014). In all cases, studies
were able to identify areas with more cases than expected, highlighting in many cases the
relevance of regions that did not present a comparatively higher incidence.

Globally, Rogers and Randolph (2000) have used maximum likelihood methods (i.e. a
similar approach to the scan statistic) to predict areas where malaria is likely to expand
as a result of climate change.

Malaria in Colombia
Banguero (1984) reports that malaria in Colombia is normally found in adult males
from large households, and associated with their forestry activities. This finding has
been explored and confirmed by knowledge, attitude and perception (KAP) studies about
malaria in Colombia for different regions (Pineda and Agudelo 2005). Furthermore, other
studies have shown that ethnicity in the Amazon Basin can explain a ratio of 33% of
variation in risk for contracting the disease between Huitoto and Tikuna settlements
(Alexander et al. 2005).

In the Americas, Barrera and collaborators (Barrera et al. 1999) studied the
reintroduction of malaria to an area in Venezuela where it had been eradicated. They
were able to document that the disease changed in epidemic characteristics in 1988 in the
context of La Niña, while public efforts were unable to adapt, resulting in the inefficacy
of public health measures under the new conditions and thus in an epidemic of malaria
where it had previously been under control (Barrera et al. 1999).

Most geographical studies of malaria occur in response to the development of
methods aimed at Entomological Inoculation Rate (EIR) measurements derived from the
formulation of Macdonald (1955, 1956a,b), who designed EIR for the characteristics
of the disease in Africa since local vectors have a high potential for transmission.
Kleinschmidt et al. (2000) and Gemperli et al. (2004) analyze risk factors for malaria
through the combination of case data, household surveys, and infant mortality data.
From cases based in the African continent, they suggest that the EIR indicator is not
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the best measurement of malaria prevalence (Gemperli et al. 2004; Kleinschmidt et al.
2000). Factors inversely related to malaria are the household’s educational level, income,
longer birth intervals, and possibly the age of the mother, consistent with previous studies
(Gemperli et al. 2004; Kleinschmidt et al. 2000; Jain 1985).

Recently, a good amount of work on spatial analysis of disease has dealt with
determining the influence of climate change on transmission. Siraj et al. (2014) showed
that warmer temperatures shift the altitude at which malaria can persist in Antioquia,
with an increase of 300 m. in the altitude accumulating 50% of the cases between
1994 and 1997. Because of the country’s convoluted geography, and specially because
altitudes just above the malaria transmission elevation limit are more densely populated,
understanding the role of climate change is crucial to assess what areas will be in higher
risk of transmission in the near future. Similarly, Ruiz et al. (2006) produced a multi-
sited early warning system which accounts for climatic and vector variables to warn of
conditions facilitating transmission, and Fuller et al. (2014) mapped the risk of malaria
transmission for the whole country, based on knowledge of vector species and climatic
variables. However, each method posses a limitation: Studies by Siraj et al. (2014) and
Ruiz et al. (2006) only looked at a fraction of the whole country, albeit the most malarious
regions of the country, while the participatory methods implemented by Fuller et al.
(2014) only found weak correlations with malaria cases (having a better assessment of
“potentially” malarious regions, rather than the current epidemic state).

METHODS
The analysis for this study was generated from case reports based on active and passive
detection methods. All cases are laboratory confirmed and geocoded to the municipality
level. We included data for 1,156 municipalities, that range in area from 15 to 65,674
km2 ; total area sampled was 1,142 million km2. For each municipality, we also analyzed
ethnic membership, comprising 3,369 different populations.

Clustering
The two main objectives are to determine if malaria outbreaks exist in Colombia, and,
if so, to determine their location. To address these objectives, we apply scan statistics
to perform a hypothesis test in each municipality, examining whether it presents an
outbreak. These approaches have been widely used in epidemiological studies Kulldorf
(1997), Neill (2009), and Neill and Wong (2009).

The model to test hypothesis is mainly based on the Bernoulli model of Kulldorf
(1997).

Given the data aggregated by municipality for 2007-2015, each record is assigned
to the centroid of the municipality. Because the set of possible outbreaks (all possible
aggregations of neighboring municipalities) is almost unlimited in terms of shape and
size, so the step is to approximate this set. In this case, a grid G of N ×N was overlaid
onto Colombia’s jurisdictional boundaries and then the set of possible outbreaks is
limited to all the possible sub rectangles within the grid.
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Now, under the Bernoulli model we consider a measurement µ for each rectangle
R ⊆ G, where µ(R) corresponds to an integer and in our specific case, the number of
individuals inside the given rectangle. This leads us to assume that there is a rectangle
Z ⊆ G such that each individual inside Z has a probability p of being infected, while
the individuals outside Z have a probability q. Let nR be the number of observed malaria
cases insideR, so by assuming a Bernoulli and the following hypothesis for our unknown
variables p and q:

H0 : p = q (1)
H1 : p > q . (2)

we have these possible distributions:

• Assuming H0 :
nR ∼ Bin(µ(R), p) ∀R ⊆ G

• Assuming H1 :

nR ∼ Bin(µ(R), p) ∀R ⊆ Z and nR ∼ Bin(µ(R), q) ∀R ⊆ ZC

And hence, under H1, we have that Z is a region with potential malaria outbreak.
Lastly, the third and final step is to establish a measure of density for each subrectangle,

in this case the likelihood ratio. This measurement of density has desirable properties to
compare different sized rectangles (Neill and Wong 2009). Kulldorf (1997) derives the
formula for likelihood ratio of a generic region. The scan statistic λ is defined as the
highest density measurements for all subrectangles:

λ∗ = max
R

λ(R)

λ(R) = pnR(1− p)µ(R)−nRqnG−nR(1− q)(µ(G)−µ(R))−(nG−nR)

The local measurement λ(R) can be interpreted as the likelihood that subrectangle R
is an outbreak.

To test the hypothesis represented in equation 1 a Monte Carlo simulation was used to
obtain the histogram of the statistic λ∗ under the null hypothesis. Finally, it assesses the
value of λ∗ with the observed data. If p > 0.05 under the null model, H0 is rejected and
we assume an outbreak.

Synchronous epidemic visualization
The main objectives are to determine whether abnormal behaviors are related across
municipalities and finding, if a relationship exists, groups of them that have a similar
temporal patterns, independent of their geographical layout.
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To address these matters we turn to topological data analysis. TDA and mapper
explanation

Now, for our each one of the 1,156 municipality we calculated an epidemic occurrence
vector defined and constructed as follows:

Given a certain municipality k, denote sw,y thew week of the year y, with 1 ≤ w ≤ 53
and 2007 ≤ y ≤ 2015. Now, let πk(sw,y) be the total malaria cases for the municipality
k in the given week, and define the sample:

Skw = {πk(si,j) | w − 2 ≤ i ≤ w + 2, y ∈ [2007, 2015]}

This sample consists of the total cases reported for the municipality in question, among
the surrounding weeks of w, for every year. If we let µ(Skw) and σ(Skw) be the mean and
standard deviation of the previous sample, then we can define:

epik(sw,y) =

{
1 if πk(sw,y) > µ(Skw) + 2σ(Skw)

0 any other case

This function tells us if a municipality shows an abnormal behaviour on the given
period, that is, if at that given week, the total reported cases exceeds the mean value of
the sample by two standard deviations.

The epidemic occurrence vector consists of binding the columns of the matrix defined
as:

(V k)i,j = epik(Si,j)

so we have a vector indicating if the given municipality showed abnormal behaviour
for each of the 477 weeks across the years 2007 to 2015.

To this new sample of vectors we applied TDA, selecting the cosine similarity the
similarity notion for the records and the filter function as the first and second principal
components of data.

RESULTS

Clustering
We found an outbreak of Plasmodium vivax malaria that comprised the Amazon Basin,
including the departments of Amazonas, Caquetá, Meta, Guaviare, Putumayo and
Nariño. Regions of Vichada, Chocó, Caldas and Antioquia also presented outbreaks,
as did the region surrounding Barranquilla in the Caribbean. Singular clusters for this
species where detected in parts of Putumayo. Significant outbreaks of Plasmodium
falciparum malaria in municipalities of Chocó, Risaralda, Antioquia, Nariño and
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Guaviare. Singular clusters for this species where detected in parts of Nariño. All
significant outbreaks are highlighted in Figures 8-10.

Synchronous epidemic visualization
The TDA enabled us to find at least 5 groups with high overall disease intensity, defined
as the number of cases with infants (age below 5 years) over the total number of cases.
Two of this groups are respectively concentrated on the Pacific and Caribbean coasts,
showing a geographic relation among their municipalities. The remaining three groups
have their members scattered around different parts of the country, including Choco,
Guania, Antioquia and Casanare.

We also identified five significant municipalities, corresponding to the central nodes in
the TDA graph (figure 4a) and are reported in table 7. This municipalities are responsible
for the connection among several nodes in their corresponding subgraphs (figure 5a)
appearing in overlapping zones of the selected TDA filter.

Ethnicity
Figures 11-17 show the histograms of age reports of malaria by ethnicity and region.
Two distinctive patterns consistently appearing throughout different regions of Colombia.
First, an endemic profile risk was observed for the indigenous populations of Amazonas,
Cauca, and Pacı́fico, mostly associated with Plasmodium vivax, except for Pacı́fico,
where Plasmodium falciparum was consistently more prevalent across all ethnic groups
in comparison with the rest of the country.

Populations with no ethnic denomination (ND) presented the characteristic signature
of an occupational risk hazard∗ consistently though most of the regions studied:
Amazonas, Caribe, Cauca, Oriente, and Pacı́fico.

The Afrocolombian population also presented a pattern consistent with occupational
risk hazard in Amazonas, Caribe, Cauca, Noroeste, Oriente, and Pacı́fico. Interestingly, in
Cauca the Afrocolombian population has a higher prevalence of Plasmodium falciparum,
but this was not detected within the other two ethnic groups.

Both Caribe and Noroeste presented an unusual pattern compared to other regions,
where the indigenous population showed patterns that could be both occupational and
endemic. However, Afrocolombian ethnicity and the ND group presented a pattern
mostly consistent with occupational risk hazard, but where endemicity may also have
played a role in malarial transmission.

∗In a histogram of case reports by age and sex, an occupational risk hazard has a unique and characteristic
signature: one age class, typically for only one sex, presents an outstanding number of cases compared to any
other age class. In the case of malaria in Colombia, we observed that men with no ethnic denomination of
ages 20-25 were contracting malaria far more often than any other class. From this simple observation, we
inferred the following: first, men of this age class were engaging in activities that posed a risk of contracting
the disease. Second, women were not engaging in this activity, nor were men in other age classes. Third, there
was no household transmission, since infected men were not infecting other members of their family once they
ceased to engage in the risky activity.
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DISCUSSION

Nothing of the new to methods has been included here

Malaria in Colombia was characterized by a different intensity, synchrony and
segregation in each region. While there was a general pattern of risk throughout the
country associated with occupational hazard, some populations experienced intense
malaria exposure in endemic pockets. Understanding the interaction of such pockets is
fundamental to designing malarial control strategies. Here we have produced a systematic
approach that analysis of malaria under three dimensions.

Colombia experienced a generalized malaria outbreak in the Amazon region for the
period studied. We found that there was little synchrony among the municipalities that
composed the Amazon region, and that this outbreak was spatially connected to the
Southern Pacific Coast. In the Amazon region, where there was relatively high degree
of cultural diversity, indigenous populations experienced malaria in endemic patterns,
contrary to the risk of the ND population for both the region and for the country.

The Cauca basin was characterized by different pattern: the Afrocolombian population
experienced a segregated exposure to Plasmodium falciparum in a way that no other
ethnic group did. The pattern observed for most of the country is not consistent across
the Pacific region, where Plasmodium falciparum also persisted at a relatively higher
prevalence than in the rest of the country in comparison to Plasmodium vivax. Most
interestingly, the Cauca Basin region contained two different populations that lived in
pockets of endemicity, while it is also synchronous with other regions, and furthermore
it is part of a region where the scan statistic algorithm detected an outbreak.

Our findings have potential implications for malarial control. First, we found that
malaria in Colombia did present different, isolated pockets with distinctive epidemic
characteristics. The magnitude of such differences in epidemic characteristics is relevant
in studying the pressure of anti-malarials upon the parasite, since the emergence of
resistance has been reported in the country. We found that Plasmodium falciparum
was particularly acute among the Afrocolombian population of the Cauca Basin and
the Pacific region. However, in the Cauca Basin, it constituted an isolated outbreak,
while in the Pacific, the outbreak was dispersed among both the Afrocolombian and
the indigenous populations. Different parasite loads among ethnically and culturally
distinct populations constitute the quintessential mechanism of selective pressures that
are ideal for the evolution of parasites. The diversity of epidemic characteristics
of malarial infection among the subpopulations of Colombia account for an ideal
environment for parasite evolution, where plasmodia persist under different pressures
of asymptomatic individuals, susceptible classes of ethnically distinct populations,
and public health interventions using different anti-malarial strategies. Such diversity
provides the necessary conditions, acting as isolated experiments, and then sharing
“successful” results, for the emergence of resistant parasites.

Second, the patterns of endemicity observed in these populations suggested that
prevention efforts should be population specific, and vary according to the epidemic
characteristics exhibited by the parasite in the targeted population. Therapeutic failures
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have been suggested to be correlated with high intestinal parasite loads (Blair-Trujillo
et al. 2002). The effectiveness of bed nets has been reported to be low among populations
that experience intense malaria exposure (Snow et al. 1996). We have identified
populations that experienced malaria endemicity, where prevention efforts focused on the
distribution of bed nets. Our findings, combined with previous knowledge suggest that
public health interventions should integrate two aspects: 1) Diagnostic and treatment of
asymptomatic malaria; and 2) Diagnostic and treatment of intestinal parasites (to reduce
therapeutic failure).

Third, prevention strategies focusing on populations with endemic malaria would yield
a reduction of occupational hazard malaria, since the occupational hazard is associated
to visiting locations where malaria persists.

FIGURES

Prepared using sagej.cls



DRAFT

14 Journal Title XX(X)

Mean malaria incidence by Municipality
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Figure 1. Malarial incidence for both species in Colombia from 2003-2008.
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Mean Plasmodium falciparum malaria Incidence by Municipality

Quantile (Equal−Frequency) Class Intervals

[0,54]
(54,159]
(159,281]
(281,493]
(493,757]

0 200 400 km

scale  ~1:15,000,000

Figure 2. Plasmodium falciparum incidence in Colombia from 2003-2008.

Prepared using sagej.cls



DRAFT

16 Journal Title XX(X)

Mean Plasmodium vivax malaria Incidence by Municipality
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Figure 3. P.vivax incidence in Colombia from 2003-2008.
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(a) Graph constructed using TDA
over the epidemic occurrence
vectors.

(b) Plot of the epidemic occurrence
vectors over their first and second
principal components.

Figure 4. TDA results. In the graph ach node represents a set of municipalities have similar
epidemic occurrence over time, and if a municipality is in two nodes then there is an arch
between them.
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(a) Graph constructed using TDA
over the epidemic occurrence
vectors, where selected groups have
been highlighted.

(b) Plot of the epidemic occurrence
vectors over their first and second
principal components, where the
municipalities that compose the
selected groups have been
highlighted.

Figure 5. TDA results, with selected groups. Each of the highlighted groups represents a set
of municipalities that appear in subgraphs with high overall disease intensity. So in turn, each
group contains municipalities with high malaria incidence that have similar temporal
behaviour.
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Figure 6. Selected municipalities by TDA over the Colombian territory. Notice that only the
first and fifth group show a geographic pattern, whereas the rest are scattered around other
territories. The arrows point to the central municipalities of each group. These central
municipalities are responsible for the connectivity of their corresponding subgraphs,
appearing in more than one node and in turn, creating an arch between them.
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Figure 7. Selected central municipalities after executing TDA over the epidemic occurrence
vectors. This are the municipalities responsible for the connectivity among their respective
groups and subgraphs.
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Municipalities with Malaria Epidemic

Figure 8. Significant outbreaks of malaria (all parasites) in Colombia from 2007-2015,
calculated using the scan statistic developed by Kulldorf (1997) based on a likelihood ratio.
The significance threshold parameter was calculated using a Bernoulli model where cases
were simulated for each municipality, and taking the maximum value. The process was
iterated many times and the distribution of the maximum values was calculated to determine
the 95% confidence interval. The principal epidemic clusters detected by this procedure are
located in Cordoba, Nariño and Antioquia
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N
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Epedemic Clutsers for Plasmodium Falciparum

Municipalities with Plasmodium Falciparum Epidemic

Figure 9. Significant outbreaks of Plasmodium falciparum in Colombia from 2007-2015. The
method used to find significant outbreaks is the same as described for Figure 8. Significant
clusters were observed in municipalities of departments: Chocó, Risaralda and Antioquia.
The municipalities: Policarpa and Cumbitirá, in Nariño appear to be a hidden cluster for this
parasite, since they weren’t marked as epidemic when considering all malarian parasites.
(Figure 8)
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N

300 km

Epedemic Clutsers for Plasmodium Vivax

Municipalities with Plasmodium Vivax Epidemic

Figure 10. Significant outbreaks of Plasmodium vivax in Colombia from 2007-2015. The
method used to find significant outbreaks is the same as described for Figure 8. Significant
clusters were observed in municipalities of departments: Cordoba, Vichada and Antioquia.
The municipality: Orito in Putumayo appears to be a hidden cluster for this parasite, since
they weren’t marked as epidemic when considering all malarian parasites. (Figure 8)
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Malaria by species, age, sex and ethnicity in the Colombian Amazon

Figure 11. Malaria by parasite species, age, sex and ethnicity group of human cases in the
Amazonian Colombia. Histograms show counts of cases per 5-year-age-groups. This graph
shows that the indigenous population experienced endemic malaria, while the disease in the
Afrocolombian and “Other” ethnic categories characterized by the profile of an occupational
risk hazard.
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Malaria by species, age, sex and ethnicity in the Colombian Caribbean

Figure 12. Malaria by parasite species, age, sex and ethnicity group of human cases in the
Caribbean coast of Colombia. Histograms show counts of cases per 5-year-age-groups. This
graph shows that the disease in the Afrocolombian and “Other” ethnic categories
characterized by the profile of an occupational risk hazard.

Prepared using sagej.cls



DRAFT

26 Journal Title XX(X)
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Malaria by species, age, sex and ethnicity in the Cauca Basin

Figure 13. Malaria by parasite species, age, sex and ethnicity group of human cases in the
Cauca River Basin. Histograms show counts of cases per 5-year-age-groups. This region
showed a peculiar pattern compared to the rest of the country, since both the indigenous and
the Afrocolombian populations showed signs of intense malaria exposure (endemic among
the first and as occupational risk hazard for the second), yet, the main parasite infecting the
population is different (more Plasmodium falciparum among Afrocolombians). This suggests
that at least two separate malarious regions exist within the Cauca Basin, each with
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Malaria by species, age, sex and ethnicity in Center

Figure 14. Malaria by parasite species, age, sex and ethnicity group of human cases in
Central Colombia. Histograms show counts of cases per 5-year-age-groups. Since this is a
predominantly mountainous region where there is no transmission of malaria, most cases are
likely imported from elsewhere and reported at the place where they are diagnosed. An
endemic pattern was observed for Plasmodium vivax while the “Other” category presented a
pattern suggesting occupational risk hazard.

Prepared using sagej.cls



DRAFT

28 Journal Title XX(X)
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Malaria by species, age, sex and ethnicity in North Western Colombia

Figure 15. Malaria by parasite species, age, sex and ethnicity group of human cases in
North Western Colombia. Histograms show counts of cases per 5-year-age-groups. All ethnic
groups presented patterns suggesting intense malaria exposure with some degree of
difference by sex. This pattern suggests that foci with both endemicity and occupational risk
hazard may coexist within the region, being the indigenous population the most endemic of
all.
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Malaria by species, age, sex and ethnicity in Eastern Colombia

Figure 16. Malaria by parasite species, age, sex and ethnicity group of human cases in
Eastern Colombia. Histograms show counts of cases per 5-year-age-groups. The malarial
patterns observed suggest endemicity among the indigenous population, while a
predominantly occupational risk hazard for the Afrocolombian and “Other” ethnic groups.
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Plasmodium falciparum Plasmodium vivax
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Malaria by species, age, sex and ethnicity in the Colombian Pacific Coast

Figure 17. Malaria by parasite species, age, sex and ethnicity group of human cases in the
coastal region of the Colombian Pacific. Histograms show counts of cases per
5-year-age-groups. Interestingly, Plasmodium falciparum was more abundant but not endemic
among the Afrocolombian population, but endemic among the indigenous population.
Plasmodium vivax was endemic among the indigenous, but not among Afrocolombians. The
“Other” population group presented a pattern consistent with occupational risk hazard.
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Ruiz, Juan S Zuluaga, and Guillermo L Rua. Coupling between annual and ENSO timescales
in the malaria-climate association in Colombia. Environmental health perspectives, 109(5):
489, 2001.

Alexandre S Gagnon, Karen E Smoyer-Tomic, and Andrew B Bush. The El Nino Southern
Oscillation and malaria epidemics in South America. International Journal of Biometeorology,
46(2):81–89, 2002.

Marı́a V Valero-Bernal. Malaria in Colombia: retrospective glance during the past 40 years. Revista
de Salud Pública, 8(3):141–149, 2006.

WHO. Malaria entomology and vector control. World Health Organization, 2013.
Adrian VS Hill. Malaria resistance genes: a natural selection. Transactions of the Royal Society of

Tropical Medicine and Hygiene, 86(3):225–232, 1992.
B Greenwood, K Marsh, and R Snow. Why do some African children develop severe malaria?

Parasitology Today, 7(10):277–281, 1991.
VE Rosario. Genetics of chloroquine resistance in malaria parasites. Nature Publishing Group,

261(5561):585–586, 1976.
Thomas E Wellems and Christopher V Plowe. Chloroquine-resistant malaria. Journal of Infectious

Diseases, 184(6):770–776, 2001.

Prepared using sagej.cls



DRAFT

32 Journal Title XX(X)

J Soto, J Toledo, P Gutierrez, M Luzz, N Llinas, N Cedeño, M Dunne, and J Berman. Plasmodium
vivax clinically resistant to chloroquine in Colombia. The American Journal of Tropical
Medicine and Hygiene, 65(2):90–93, 2001.

Carmen Manuela Castillo, Lyda Elena Osorio, and Gloria Inés Palma. Assessment of therapeutic
response of Plasmodium vivax and Plasmodium falciparum to chloroquine in a malaria
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Padilla, Myriam Arévalo-Herrera, and Sócrates Herrera. High prevalence of sub-microscopic
infections in Colombia. Malaria journal, 14(1):201, 2015.

Diana Carolina Ortega, Cristian Fong, Heiber Cardenas, and Guillermo Barreto. Evidence of
over-dominance for sickle cell trait in a population sample from Buenaventura, Colombia.
International Journal of Genetics and Molecular Biology, 7(1):1–7, 2015.
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