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2Who am I?

• From Stoke-on-Trent in the UK. 

• I use Machine Learning to improve studies I perform looking for 

neutrino oscillations, a key driver of particle physics research.

• Did my undergraduate and PhD at the University of Sheffield, UK.

• Worked on simulations and reconstruction techniques in a prototype 

detector for the next generation of neutrino experiments (DUNE). 

• Currently working at Iowa State University, USA and based at Fermilab, 

in Illinois, USA. 

• Working on supernova triggering in DUNE. Will speak about how Machine 

Learning may be a better method of doing this later on in the seminar.

• Lead the Reconstruction and Deep Learning on NOvA, which had the first 

physics result using a Machine Learning algorithm.



3A Brief Outline

• What are neutrinos? What do we try to do in Neutrino Experiments?

• A brief introduction to Machine Learning.

• The challenges of applying Machine Learning in neutrino experiments.

• The future opportunities presented by Machine Learning techniques.
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An atom has a nucleus (made of protons and neutrons) 

orbited by electrons. 

A crash course in Particle Physics
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An atom has a nucleus (made of protons and neutrons) 

orbited by electrons. 

• Protons:   2 up and 1 down quarks.

• Neutrons: 1 up and 2 down quarks.

• Electrons are fundamental and stable.

• Neutrinos are counterparts to electrons, but 

are rarely discussed despite being extremely 

numerous and having played an important 

role in the evolution of the Universe. 

A crash course in Particle Physics
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• The Standard Model of Particle Physics.

• Various hints that it isn’t complete;

• Doesn’t explain dark matter,

• Doesn’t explain dark energy,

• Doesn’t the matter/anti-matter asymmetry 

in the Universe,

• Doesn’t explain “Grand Unified Theories” 

such as Super Symmetry,

• Struggles to explain the properties of neutrinos 

which we observe…

A crash course in Particle Physics
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• Neutrinos are really light.

• This “mass-gap” cannot currently be 

explained without some pretty 

extreme modifications to the 

Standard Model.

• They are also the only fundamental 

particle with no electric charge.

A crash course in Particle Physics – Neutrinos
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• Neutrinos are really light.

• This “mass-gap” cannot currently be 

explained without some pretty 

extreme modifications to the 

Standard Model.

• They are also the only fundamental 

particle with no electric charge.

A crash course in Particle Physics – Neutrinos

𝜈

𝜈

• Neutrinos are the most numerous matter particle in the 

Universe and are produced by pretty much everything. 

• Neutrinos interact much less than any other particle.

• This makes them very hard to study. 
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• Neutrinos don’t exist as discrete flavour states, but instead as a 

combination of the three flavour states, called 𝜈!, 𝜈", 𝜈# which each 

have a different mass. 

• We have handles on the differences of these masses, but do not 

know the exact structure of them. 

A crash course in Particle Physics – Neutrinos
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• Neutrinos don’t exist as discrete flavour states, but instead as a 

combination of the three flavour states, called 𝜈!, 𝜈", 𝜈# which each 

have a different mass. 

• We have handles on the differences of these masses, but do not 

know the exact structure of them. 

A crash course in Particle Physics – Neutrinos

• It is possible that the nature of neutrino masses are 

different to that of all other particles.

• The observation of a forbidden process in the SM 

would shows that this is true, as well as possibly 

resolving the order of the neutrino masses.



11A crash course in Particle Physics – Neutrino Oscillations
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Imagine a cluster of neutrinos. 

It is initially very pure, with almost all being 

of flavour 𝜈$, though there is a small 

contamination of 𝜈%.



12A crash course in Particle Physics – Neutrino Oscillations
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𝑳𝟏

The neutrinos travel a distance 𝐿!, over a 

time T.

Many of the initially 𝜈$ neutrinos will 

behave as a different flavour 𝜈%. 

𝑳𝟐𝑳𝟏
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𝑳𝟏 𝑳𝟐

A distance 𝐿" later most of the 𝜈%
neutrinos will have oscillated back to 𝜈$.

The values of the oscillation parameters 

affect the rate of oscillations, as does the 

presence of a 3rd neutrino mass state.

𝑳𝟏 𝑳𝟐



14How we Build Neutrino Experiments – LOTS of Different Ways

To APD 
Readout

Scintillation 
Light

Wavelength 
Shifting
Fiber Loop

Particle 
Trajectory

3.9 cm 6.6 cm

15
.5

 m

NEXT, PMTs, SIPMs

ICE-Cube, 
Ice, PMTs.

NOvA, Scintillator

Various, Liquid Argon
Kamland-Zen, 

Scintillator

MINERvA, Various



15What we aim to do in Neutrino Experiments – Energies
KATRIN, neutrino mass measurements

NEXT, neutrino-less double beta decay

Looking for 
this little 

spike!
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NOvA: L=810 km, E=2.0 GeV
NOvA, neutrino oscillation

MINERvA, cross-sections

ICE-Cube, PeV energy 
neutrino!

Neutrino interactions 

occur over a wide range of 

energies, almost 10 orders 

of magnitude! 

Looking for this 
change in “the tail”!



16What we aim to do in Neutrino Experiments – Topologies

𝟏𝒎

NOvA, neutrino oscillation

NEXT, neutrino-less double beta decay

ICE-Cube, oscillations and high energy neutrinos.

Neutrino interactions 

can look very different 

in different detectors. 

Cross-sections & oscillations



17A Brief Introduction to Machine Learning

Algorithms whose performance for a given 

task improves with experience
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• Simplest way to visualise a neural network. 

• A large collection of interconnected neurons which each

• Take in a number of individually weighted inputs

• Employ mathematical functions, activation weights, to calculate an output 

weight which is passed to future neurons.

The Structure of Artificial Neural Networks (ANNs/DNNs)

Loss
• Neurons are connected in layers allowing 

the network to learn about the inputs.

• Arbitrary number of hidden layers.

• Neurons are ultimately connected to form an 

output score which the network is trained to 

achieve.



19The Structure of Artificial Neural Networks (ANNs/DNNs)

LossThe inputs to the network are often 

extracted using traditional reconstruction 

methods.

Note, that they do not necessarily learn why

certain inputs are correlated, just that they are.

Physics examples are things like decay kinematics.

Length

NHits

Energy

�e CC
Top Side
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• Classified events using hit patterns. 

• It did not achieve better separation 

than traditional methods.

• It showed that it was possible to do 

though, and lay the groundwork for 

these techniques to be explored. 

• Modern analyses feature NNs across 

a wide range of applications.

The First Use of ANNs in Neutrino Physics

The SNO Experiments first use of a DNN in the 1990s.
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Premise: Allow the network to extract features rather 

selecting them a-priori. 

• Removes any biases which may be introduced from 

the traditional reconstruction algorithms. 

In Practice: Cast detector signals into maps and use CNNs 

to classify interactions in the style of image recognition. 

• Use image kernels to do this from 2D arrays. 

• Traditionally use an image-to-RGB tensor strategy.

Convolutional Neural Nets (CNNs)
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The convolution layers use image 

kernels for feature extraction.

Convolutional Neural Nets (CNNs)
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The convolution layers use image 

kernels for feature extraction.

The pooling layers down-sample 

the image, reducing computational 

cost and emphasizing features. 

Convolutional Neural Nets (CNNs)
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• A huge growth in computing power over the last decade. 

• Particularly GPU technology.

• At the same time, networks are becoming much more 

accurate, whilst requiring fewer computing resources. 

• Modern experiments produce enormous datasets.

• Some future experiments are ~30 PB per year!

• Applications from industry are applicable to many 

physics problem sets. 

Why is Machine Learning Becoming Popular Now?
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Challenges involved in applying Machine Learning in 
Neutrino Experiments

#1: The Adaptability of methods.
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• Developed for the 2014 ImageNet Challenge (ILSVRC 2014).

• The first creatively non-sequential implementation of convolutional 

layers in CNNs. 

• Had significantly higher accuracy and performance improvements 

compared to its competitors. 

• Neutrino experiments attempted to use it with few modifications.

GoogLeNet and The First Applications of CNNs
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• A network designed to perform background 

rejection for neutrinoless double beta decay. 

• Equal numbers of signal and background events 

are used in training. 

• 2D projections of the detector readout  

(XY, YZ, XZ) are used as the RGB input for 

the network.

• Outperforms traditional reconstruction by 

between 20% and 60%. 

GoogLeNet and The First Applications of CNNs – NEXT

Pixel maps used by the NEXT experiment.

Top, a coarse voxelation (10 mm voxels) where structure at the end of the track is lost.

Bottom, a fine voxelation (2 mm voxels) where this structure is still visible.



28GoogLeNet and The First Applications of CNNs – NOvA

• Network designed to perform interaction classification.

• Subsequently extended to perform the identification of individual particles. 

• The detector has two decoupled views, meaning that they cannot be 

combined into a single RGB tensor. 

• Therefore employs a Siamese architecture, with an input for each view. 

• When first used in 2017, it increased effective exposure by 30%.

• Was the first CNN to be used in a published particle physics result. 

• Found that training sign-dependant networks increased effectiveness. 

⌫̄ E�ciency Improvement
Training Sample (ID > 0.9)

⌫̄e CC Signal ⌫̄µ CC Signal ⌫̄ NC Signal
14% 6% 10%

<latexit sha1_base64="D6n/P4mnlGtrZKg3zJnxSdxAoVc="></latexit><latexit sha1_base64="D6n/P4mnlGtrZKg3zJnxSdxAoVc="></latexit><latexit sha1_base64="D6n/P4mnlGtrZKg3zJnxSdxAoVc="></latexit><latexit sha1_base64="D6n/P4mnlGtrZKg3zJnxSdxAoVc="></latexit>
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• Kamland-Zen is a near-spherical detector.

• Translating that into a 2D space, can cause distortions.

• As such, the use of spherical CNNs is required. 

• The kernel covers the whole phase-space by scanning 

Euler angles, avoiding such distortions. 

• A Spherical network achieves better background than 

their original network (71% vs 61%). 

Spherical CNNs – Kamland-Zen 

Extracted feature
in Euler Angle

SO(3)
Convolution



30Graphical Neural Nets – IceCube

• IceCube is a very non-uniform detector which takes data that is very 

sparse. 

• It is therefore not well suited to CNNs.

• GNNs are designed to classify graphs, where the nodes define an 

element of the detector, and the edges show connections between 

elements. 

• Ideally places to mitigate the difficult aspects of data of IceCube. 

• Developed a GNN to separate neutrino and cosmic induced events;

• Identifies 630% more signal events than a CNN/traditional algorithm with a 

Signal-to-Noise ratio which is 3 times larger. 



31Challenge #2: Quantifying Network Bias and Uncertainties 

Humans know features which 

animals do and don’t have.

We need to make sure that our 

algorithms do too. 
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• Model bias is a problem for all Machine Learning.

• As the extracted features are abstract, CNNs are particularly 

susceptible to underlying model bias though.

• Models are trained using simulated data;

• Assumptions are made in generating such data on both the 

model and the detector performance. 

• Assumptions are made in selecting training dataset.

• Simulation will never fully reproduce real data. 

• Though this is a well known problem, no standard and 

complete techniques exist to address it. 

The Dangers…

https://arxiv.org/pdf/1807.04975.pdf

The composition of training samples can constrain 

network performance by containing in-built model 

assumptions which may bias the results. 

https://arxiv.org/pdf/1807.04975.pdf
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• A network designed to perform charge-only energy 

reconstruction which was initially trained on a specific 

calibration source – 228Th.

• A systematic study found an unusually large 

improvement in the Eres for events in the 208Tl peak.

• Training on calibration data using a gamma-ray source 

located in the centre of the detector removed this 

unusually large improvement.

• Studies repeated using a range of calibration sources at 

various locations yielded consistent results. 

Carefully Constructed Training Datasets – EXO-200.

An unusually large improvement in the  

Energy Resolution is seen in the green line, 

which is not present in the Uniform Training.
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• It is difficult to correct for, or quantify unknown biases. 

• It is possible to minimize their impacts though. 

• The DANN used in MINERvA is a prime example.

• A main network perform classification, whilst a second sub-

network is incorporated for bias reduction. 

• The domain sub-network incorporates real data into 

the training to identify simulation/data differences.

• The gradient reversal layer discourages the 

classification network from learning any of the 

differences between the domains.

Domain Adversarial Neural Networks – MINERvA



35Quantifying Bias in Simulation vs Data – NOvA 
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Select a Muon Neutrino interaction 

from Data/Monte Carlo.

Remove the hits associated 

with the muon.

Simulate an electron with the same 

energy as the removed muon.
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• A process of Data Augmentation, known as Muon Removed, Electron Added seeks to quantify bias in NOvA.

• Good agreement is found between comparisons of augmented data and simulation. 

• A second process aims to further quantify bias, by studying muons from cosmic rays which decay in the detectors. 
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• Impossible to know the true identity of real data, 

though humans can often correctly identify it.

• Interestingly, when given identical datasets there will 

be differences between human and NNs.

• Suggests unknown biases between humans to NNs.

• MicroBooNE created a human-labelled dataset to 

validate a semantic-segmentation network.

• Trained on simulated events, with 5+ particles originating 

from a common vertex.

• Humans and the NN disagreement: ~2% of particles.

Human Labelled Datasets – MicroBooNE
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• Replace fixed value weights with 

probability distribution functions.

• The output is thus a probabilistic 

function which can be interpreted as 

most probable value.

• Thus able to convey a scale of 

uncertainty related to predictions 

which are outside of the scale of the 

training dataset. 

Bayesian Neural Networks

�1
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• Deeper networks are more difficult to interpret. 

• The exact behaviour of individual kernels and how they combine 

to form the weights of a CNN is almost impossible to deduce. 

• This is much easier to do with boosted-decision-trees.

• Particularly troublesome for physicists who want to relate 

network features to underlying physics phenomena. 

• Knowing this could minimize or correct network inefficiencies.

• Could also hint at specific features which are important to train 

against. 

Challenge #3: Network Interpretability
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• Widely used technique to interpret features, and 

establish a proxy for classification separation. 

• Network features are transformed down to 2D.

• Uses a non-linear transformation to do this.

• Preserves separation between points, but with lower 

dimensionality. 

• A t-SNE from the Daya Bay Experiment to 

separate anti-neutrinos from nearby reactors with 

experimental backgrounds. 

t-Distributed Stochastic Neighbour Embedding
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• PCA produces vectors along dimensions of maximal variation in the data.

• Vectors are orthogonal, and often performed on input data to reduce the 

number of inputs required. 

• Can also be performed on extracted features to reduce dimensionality for 

visualisation, similar to a t-SNE. 

• Also possible to identify which features are important to CNNs.

• Occlusion tests obstruct regions of an input image to find important features.

• Salience maps show what features the network uses to make determinations.

• Salience maps sometimes show that the network uses contextual information 

to make it’s determinations. 

Principal Component Analysis (PCA) and Salience Maps 
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• ML in neutrino experiments uses huge resources;

• Neutrino experiments record billions of events a year.

• Neural nets perform >109 floating point operations.

• Widespread use of large-spread computing clusters such 

as the Open Science Grid to perform evaluation on CPUs.

• Small-scale GPU clusters often used for training.

• Large-scale GPU required for evaluation.

• Currently no GPU computing clusters similar to the CPU 

OSG exists.

Challenge #4: Computational & System Constraints
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• Multi-task networks can reduce overall computational load. 

• Networks that identify neutrino flavour, can also be trained to 

identify neutrino sign, type of interaction and final state particles. 

• Smaller networks often use fewer resources, but at the cost 

of reduced performance for high complexity applications. 

• It is also possible to reduce the number of operations;

• The structure of LArTPC data means that many CNNs multiply 

or sum together zeros. 

• Using submanifold sparse CNNs can reduce inference times by a 

factor of 30, and the memory cost by a factor of 300. 

Improving Efficiency of Computing Resources

Liquid Argon Time Projection Chambers (LArTPCs) 

are globally sparse, but locally dense.
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Open datasets are commonplace in data science applications.  

However, they are still not widely used in particle physics. This is constrained by strict data-sharing restrictions. 

Efforts are underway to change this, such as the 

TrackML challenge by LHC experiments. 

Open datasets would allow multidisciplinary 

research and would likely result in improve the 

quality and physics reach of algorithms. 

10,000 tracks from the 

TrackML challenge. 

This would require revisions to both authorship and 

data-sharing policies of experiments. 



44

The Future Opportunities Offered by Machine Learning
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• FPGAs in future detectors offer the chance to manage the huge data rates of future experiments using CNNs.

• Will require online data processing of terabits per second continuously for more than 20 years. 

• The use of Machine Learning in triggers offer the chance to expand the physics reach of experiments.

• Already seen in LHC experiments, and may reduce energy thresholds in LArTPC experiments by an order of magnitude. 

Applications to Control and Manage Data Rates
Ch

an
ne

l

Time
Ch
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l
Time

DUNE will search for rare, low energy 

interactions which are dominated by 

the constant backgrounds from 

electronics and radioactivity.
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• Quantitative results and careful statistical analyses.

• Consideration of systematic effects and bias is crucial to particle physics.

• As ML becomes more widespread in physics, there will be increased efforts

in understand this.

• Key overlaps with ethical, and security concerns in wider ML applications. 

• Use of simulated datasets corresponding to real data.

• Unlike most industry applications, particle physics trains on simulations.

• These simulations can be tuned at will, making it possible to study 

networks behaviour under controlled modifications.

• Comparing data and simulations can improve studies in domain transfer.

How Neutrino Physics Can Contribute to Machine Learning
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• NOvA found that adding contextual information to a 

particle identification network improved performance.

• Has four Siamese towers, two for particle-only cluster, and 

two with the full event for contextual information.

• Improves performance by 11%.

• First technique to employ a Siamese architecture to 

add context to a network.

• Bountiful scenarios for synergy between academic and 

industry applications.

• Exploration will undoubtedly improve both fields.

Physics Studies That Can Benefit Wider ML Applications

218 220 222 224 226 228
sec)+t (

1
10

210
310

10 210 310 q (ADC)

1

10hi
ts

200 400 600 800 1000 1200

200 400 600 800 1000 1200
z (cm)

NOvA - FNAL E929
Run:   22242 / 18
Event: 232856 / --
UTC Mon Feb 15, 2016
04:36:13.437062336 sec)µt (

218 220 222 224 226 228

hi
ts

1
10

210

q (ADC)10 210 310

hi
ts

1
10

210

5000 5200 5400 5600 5800 6000

x 
(c

m
)

500

600

700

z (cm)
5000 5200 5400 5600 5800 6000

y 
(c

m
)

600−

500−

400−

NOvA - FNAL E929
Run:   22242 / 18
Event: 232856 / --
UTC Mon Feb 15, 2016
04:36:13.437062336 sec)µt (

218 220 222 224 226 228

hi
ts

1
10

210

q (ADC)10 210 310

hi
ts

1
10

210

5000 5200 5400 5600 5800 6000

x 
(c

m
)

500

600

700

z (cm)
5000 5200 5400 5600 5800 6000

y 
(c

m
)

600−

500−

400−

NOvA - FNAL E929
Run:   22242 / 18
Event: 232856 / --
UTC Mon Feb 15, 2016
04:36:13.437062336 sec)µt (

218 220 222 224 226 228

hi
ts

1
10

210

q (ADC)10 210 310

hi
ts

1
10

210

5000 5200 5400 5600 5800 6000

x 
(c

m
)

500

600

700

z (cm)
5000 5200 5400 5600 5800 6000

y 
(c

m
)

600−

500−

400−

NOvA - FNAL E929
Run:   22242 / 18
Event: 232856 / --
UTC Mon Feb 15, 2016
04:36:13.437062336 sec)µt (

218 220 222 224 226 228

hi
ts

1
10

210

q (ADC)10 210 310

hi
ts

1
10

210

5000 5200 5400 5600 5800 6000

x 
(c

m
)

500

600

700

z (cm)
5000 5200 5400 5600 5800 6000

y 
(c

m
)

600−

500−

400−

NOvA - FNAL E929
Run:   22242 / 18
Event: 232856 / --
UTC Mon Feb 15, 2016
04:36:13.437062336 sec)µt (

218 220 222 224 226 228

hi
ts

1
10

210

q (ADC)10 210 310
hi

ts
1

10
210

5000 5200 5400 5600 5800 6000
x 

(c
m

)

500

600

700

z (cm)
5000 5200 5400 5600 5800 6000

y 
(c

m
)

600−

500−

400−

NOvA - FNAL E929
Run:   22242 / 18
Event: 232856 / --
UTC Mon Feb 15, 2016
04:36:13.437062336 sec)µt (

218 220 222 224 226 228

hi
ts

1
10

210

q (ADC)10 210 310
hi

ts

1
10

210

5000 5200 5400 5600 5800 6000

x 
(c

m
)

500

600

700

z (cm)
5000 5200 5400 5600 5800 6000

y 
(c

m
)

600−

500−

400−

NOvA - FNAL E929
Run:   22242 / 18
Event: 232856 / --
UTC Mon Feb 15, 2016
04:36:13.437062336 sec)µt (

218 220 222 224 226 228

hi
ts

1
10

210

q (ADC)10 210 310
hi

ts

1
10

210

5000 5200 5400 5600 5800 6000

x 
(c

m
)

500

600

700

z (cm)
5000 5200 5400 5600 5800 6000

y 
(c

m
)

600−

500−

400−

NOvA - FNAL E929
Run:   22242 / 18
Event: 232856 / --
UTC Mon Feb 15, 2016
04:36:13.437062336 sec)µt (

218 220 222 224 226 228

hi
ts

1
10

210

q (ADC)10 210 310

hi
ts

1
10

210

5000 5200 5400 5600 5800 6000

x 
(c

m
)

500

600

700

z (cm)
5000 5200 5400 5600 5800 6000

y 
(c

m
)

600−

500−

400−

NOvA - FNAL E929
Run:   15330 / 4
Event: 11978 / --

UTC Fri May 23, 2014
17:30:2.632293184

218 220 222 224 226 228
sec)µt (

1
10

210hi
ts

10 210 310 q (ADC)

1
10

210

hi
ts

1400 1600 1800 2000 2200 2400 2600 2800 3000 3200

400

600

800

x 
(c

m
)

1400 1600 1800 2000 2200 2400 2600 2800 3000 3200
z (cm)

200−

0

200

y 
(c

m
)

With context

NOvA - FNAL E929
Run:   21259 / 45
Event: 678909 / --
UTC Sat Nov 21, 2015
10:04:0.679051776

218 220 222 224 226 228
sec)µt (

1
10

210hi
ts

10 210 310 q (ADC)

1
10

210hi
ts

4200 4400 4600 4800 5000 5200 5400 5600 5800 6000

200

400

600

x 
(c

m
)

4200 4400 4600 4800 5000 5200 5400 5600 5800 6000
z (cm)

0

200

400

y 
(c

m
)

NOvA - FNAL E929
Run:   21259 / 45
Event: 678909 / --
UTC Sat Nov 21, 2015
10:04:0.679051776

218 220 222 224 226 228
sec)µt (

1
10

210hi
ts

10 210 310 q (ADC)

1
10

210hi
ts

4200 4400 4600 4800 5000 5200 5400 5600 5800 6000

200

400

600

x 
(c

m
)

4200 4400 4600 4800 5000 5200 5400 5600 5800 6000
z (cm)

0

200

400

y 
(c

m
)

NOvA - FNAL E929
Run:   19348 / 58
Event: 832317 / --

UTC Wed Apr 15, 2015
16:36:48.989789568

218 220 222 224 226 228
sec)µt (

1
10

210hi
ts

10 210 310 q (ADC)

1
10

210hi
ts

0 200 400 600 800 1000 1200 1400

400

500

600

700

800

x 
(c

m
)

0 200 400 600 800 1000 1200 1400
z (cm)

200

300

400

500

y 
(c

m
)

NOvA - FNAL E929
Run:   19348 / 58
Event: 832317 / --

UTC Wed Apr 15, 2015
16:36:48.989789568

218 220 222 224 226 228
sec)µt (

1
10

210hi
ts

10 210 310 q (ADC)

1
10

210hi
ts

0 200 400 600 800 1000 1200 1400

400

500

600

700

800

x 
(c

m
)

0 200 400 600 800 1000 1200 1400
z (cm)

200

300

400

500

y 
(c

m
)

Far Detector Data

218 220 222 224 226 228
sec)+t (

1
10

210
310

10 210 310 q (ADC)

1

10hi
ts

200 400 600 800 1000 1200

200 400 600 800 1000 1200
z (cm)

NOvA - FNAL E929
Run:   10713 / 4
Event: 500244 / --

hi
ts

UTC Tue Jan 27, 2015
05:48:26.091133824

218 220 222 224 226 228
sec)+t (

1
10

210
310

10 210 310 q (ADC)

1

10hi
ts

200 400 600 800 1000 1200

200 400 600 800 1000 1200
z (cm)

218 220 222 224 226 228
sec)+t (

1
10

210
310

10 210 310 q (ADC)

1

10hi
ts

200 400 600 800 1000 1200

200 400 600 800 1000 1200
z (cm)

NOvA - FNAL E929
Run:   22242 / 18
Event: 232856 / --
UTC Mon Feb 15, 2016
04:36:13.437062336 sec)µt (

218 220 222 224 226 228

hi
ts

1
10

210

q (ADC)10 210 310

hi
ts

1
10

210

5000 5200 5400 5600 5800 6000

x 
(c

m
)

500

600

700

z (cm)
5000 5200 5400 5600 5800 6000

y 
(c

m
)

600−

500−

400−

NOvA - FNAL E929
Run:   22242 / 18
Event: 232856 / --
UTC Mon Feb 15, 2016
04:36:13.437062336 sec)µt (

218 220 222 224 226 228

hi
ts

1
10

210

q (ADC)10 210 310

hi
ts

1
10

210

5000 5200 5400 5600 5800 6000

x 
(c

m
)

500

600

700

z (cm)
5000 5200 5400 5600 5800 6000

y 
(c

m
)

600−

500−

400−

NOvA - FNAL E929
Run:   22242 / 18
Event: 232856 / --
UTC Mon Feb 15, 2016
04:36:13.437062336 sec)µt (

218 220 222 224 226 228

hi
ts

1
10

210

q (ADC)10 210 310

hi
ts

1
10

210

5000 5200 5400 5600 5800 6000

x 
(c

m
)

500

600

700

z (cm)
5000 5200 5400 5600 5800 6000

y 
(c

m
)

600−

500−

400−

NOvA - FNAL E929
Run:   22242 / 18
Event: 232856 / --
UTC Mon Feb 15, 2016
04:36:13.437062336 sec)µt (

218 220 222 224 226 228

hi
ts

1
10

210

q (ADC)10 210 310

hi
ts

1
10

210

5000 5200 5400 5600 5800 6000

x 
(c

m
)

500

600

700

z (cm)
5000 5200 5400 5600 5800 6000

y 
(c

m
)

600−

500−

400−

NOvA - FNAL E929
Run:   22242 / 18
Event: 232856 / --
UTC Mon Feb 15, 2016
04:36:13.437062336 sec)µt (

218 220 222 224 226 228

hi
ts

1
10

210

q (ADC)10 210 310

hi
ts

1
10

210

5000 5200 5400 5600 5800 6000

x 
(c

m
)

500

600

700

z (cm)
5000 5200 5400 5600 5800 6000

y 
(c

m
)

600−

500−

400−

NOvA - FNAL E929
Run:   22242 / 18
Event: 232856 / --
UTC Mon Feb 15, 2016
04:36:13.437062336 sec)µt (

218 220 222 224 226 228

hi
ts

1
10

210

q (ADC)10 210 310

hi
ts

1
10

210

5000 5200 5400 5600 5800 6000

x 
(c

m
)

500

600

700

z (cm)
5000 5200 5400 5600 5800 6000

y 
(c

m
)

600−

500−

400−

NOvA - FNAL E929
Run:   22242 / 18
Event: 232856 / --
UTC Mon Feb 15, 2016
04:36:13.437062336 sec)µt (

218 220 222 224 226 228

hi
ts

1
10

210

q (ADC)10 210 310

hi
ts

1
10

210

5000 5200 5400 5600 5800 6000

x 
(c

m
)

500

600

700

z (cm)
5000 5200 5400 5600 5800 6000

y 
(c

m
)

600−

500−

400−

NOvA - FNAL E929
Run:   22242 / 18
Event: 232856 / --
UTC Mon Feb 15, 2016
04:36:13.437062336 sec)µt (

218 220 222 224 226 228

hi
ts

1
10

210

q (ADC)10 210 310

hi
ts

1
10

210

5000 5200 5400 5600 5800 6000

x 
(c

m
)

500

600

700

z (cm)
5000 5200 5400 5600 5800 6000

y 
(c

m
)

600−

500−

400−

NOvA - FNAL E929
Run:   15330 / 4
Event: 11978 / --

UTC Fri May 23, 2014
17:30:2.632293184

218 220 222 224 226 228
sec)µt (

1
10

210hi
ts

10 210 310 q (ADC)

1
10

210

hi
ts

1400 1600 1800 2000 2200 2400 2600 2800 3000 3200

400

600

800

x 
(c

m
)

1400 1600 1800 2000 2200 2400 2600 2800 3000 3200
z (cm)

200−

0

200

y 
(c

m
)

Particle Only

NOvA - FNAL E929
Run:   21259 / 45
Event: 678909 / --
UTC Sat Nov 21, 2015
10:04:0.679051776

218 220 222 224 226 228
sec)µt (

1
10

210hi
ts

10 210 310 q (ADC)

1
10

210hi
ts

4200 4400 4600 4800 5000 5200 5400 5600 5800 6000

200

400

600

x 
(c

m
)

4200 4400 4600 4800 5000 5200 5400 5600 5800 6000
z (cm)

0

200

400

y 
(c

m
)

NOvA - FNAL E929
Run:   21259 / 45
Event: 678909 / --
UTC Sat Nov 21, 2015
10:04:0.679051776

218 220 222 224 226 228
sec)µt (

1
10

210hi
ts

10 210 310 q (ADC)

1
10

210hi
ts

4200 4400 4600 4800 5000 5200 5400 5600 5800 6000

200

400

600

x 
(c

m
)

4200 4400 4600 4800 5000 5200 5400 5600 5800 6000
z (cm)

0

200

400

y 
(c

m
)

NOvA - FNAL E929
Run:   19348 / 58
Event: 832317 / --

UTC Wed Apr 15, 2015
16:36:48.989789568

218 220 222 224 226 228
sec)µt (

1
10

210hi
ts

10 210 310 q (ADC)

1
10

210hi
ts

0 200 400 600 800 1000 1200 1400

400

500

600

700

800

x 
(c

m
)

0 200 400 600 800 1000 1200 1400
z (cm)

200

300

400

500
y 

(c
m

)

NOvA - FNAL E929
Run:   19348 / 58
Event: 832317 / --

UTC Wed Apr 15, 2015
16:36:48.989789568

218 220 222 224 226 228
sec)µt (

1
10

210hi
ts

10 210 310 q (ADC)

1
10

210hi
ts

0 200 400 600 800 1000 1200 1400

400

500

600

700

800

x 
(c

m
)

0 200 400 600 800 1000 1200 1400
z (cm)

200

300

400

500
y 

(c
m

)

Far Detector Data
NOvA - FNAL E929
Run:   10713 / 4
Event: 500244 / --

hi
ts

UTC Tue Jan 27, 2015
05:48:26.091133824

With Context



48

• Neutrino experiments using a myriad of technologies to study numerous physics processes applying ML in the process.

• ML algorithms have been adapted for a range of applications including classification, energy reconstruction, Monte Carlo 

generation and bias reduction. 

• Many of the challenges arising from applying ML have been overcome, though many challenges still remain. 

• Future applications of neutrino physics can contribute to the development of ML in wider applications. 

Summary

https://arxiv.org/abs/2008.01242

https://arxiv.org/abs/2008.01242

