

A Review on Machine Learning in Neutrino Experiments

Karl Warburton – Iowa State University

Quantil Seminar 12th November 2020

https://arxiv.org/abs/2008.01242

Who am I?

- From Stoke-on-Trent in the UK.
- I use Machine Learning to improve studies I perform looking for neutrino oscillations, a key driver of particle physics research.
- Did my undergraduate and PhD at the University of Sheffield, UK.
 - Worked on simulations and reconstruction techniques in a prototype detector for the next generation of neutrino experiments (DUNE).
- Currently working at Iowa State University, USA and based at Fermilab, in Illinois, USA.
 - Working on supernova triggering in DUNE. Will speak about how Machine Learning may be a better method of doing this later on in the seminar.
 - Lead the Reconstruction and Deep Learning on NOvA, which had the first physics result using a Machine Learning algorithm.

A Review on Machine Learning for Neutrino Experiments

Iowa State University

A Brief Outline

What are neutrinos? What do we try to do in Neutrino Experiments?

A brief introduction to Machine Learning.

The challenges of applying Machine Learning in neutrino experiments.

The future opportunities presented by Machine Learning techniques.

A Review on Machine Learning for Neutrino Experiments

Iowa State University

A crash course in Particle Physics

An atom has a nucleus (made of protons and neutrons) orbited by electrons.

A Review on Machine Learning for Neutrino Experiments

Iowa State University

12/11/2020

4

A crash course in Particle Physics

A Review on Machine Learning for Neutrino Experiments

A crash course in Particle Physics

The Standard Model of Particle Physics.

- Various hints that it isn't complete;
 - Doesn't explain dark matter,
 - Doesn't explain dark energy,
 - Doesn't the matter/anti-matter asymmetry
 - in the Universe,
 - Doesn't explain "Grand Unified Theories" such as Super Symmetry,
 - Struggles to explain the properties of neutrinos which we observe...

- Neutrinos are really light.
 - This "mass-gap" cannot currently be explained without some pretty extreme modifications to the Standard Model.
- They are also the only fundamental particle with no electric charge.

- Neutrinos interact much less than any other particle.
 - This makes them very hard to study.

A Review on Machine Learning for Neutrino Experiments

Karl Warburton

- Neutrinos are really light.
 - This "mass-gap" cannot currently be explained without some pretty extreme modifications to the Standard Model.
- They are also the only fundamental particle with no electric charge.

Iowa State University

- Neutrinos don't exist as discrete flavour states, but instead as a combination of the three flavour states, called v_1, v_2, v_3 which each have a different mass.
- We have handles on the differences of these masses, but do not know the exact structure of them.

- Neutrinos don't exist as discrete flavour states, but instead as a combination of the three flavour states, called v_1, v_2, v_3 which each have a different mass.
- We have handles on the differences of these masses, but do not know the exact structure of them.

- It is possible that the nature of neutrino masses are different to that of all other particles.
- The observation of a forbidden process in the SM would shows that this is true, as well as possibly resolving the order of the neutrino masses.

Karl Warburton

A Review on Machine Learning for Neutrino Experiments

A crash course in Particle Physics – Neutrino Oscillations

Imagine a cluster of neutrinos.

It is initially very pure, with almost all being of flavour ν_{α} , though there is a small contamination of ν_{β} .

A Review on Machine Learning for Neutrino Experiments

Karl Warburton

Iowa State University

A crash course in Particle Physics – Neutrino Oscillations

 $\nu_{\alpha} \ \nu_{\alpha} \ \nu_{\alpha}$ $\nu_{\beta} \nu_{\beta} \nu_{\alpha}$ $\nu_{\alpha} \ \nu_{\beta} \ \nu_{\alpha} \ \nu_{\alpha}$ $\nu_{\beta} \ \nu_{\beta} \ \nu_{\alpha} \ \nu_{\beta}$ $\nu_{\alpha} \ \nu_{\alpha} \ \nu_{\alpha} \ \nu_{\alpha} \ \nu_{\alpha}$ $\nu_{\alpha} \ \nu_{\beta} \ \nu_{\alpha} \ \nu_{\beta} \ \nu_{\beta}$ L_1 $\nu_{\alpha} \ \nu_{\alpha} \ \nu_{\alpha} \ \nu_{\alpha}$ $\nu_{\beta} \ \nu_{\alpha} \ \nu_{\beta} \ \nu_{\alpha}$ $\nu_{\alpha} \ \nu_{\alpha} \ \nu_{\alpha}$ $\nu_{\beta} \nu_{\beta} \nu_{\beta}$

> $\Delta m^2 = 0.003 \,\mathrm{eV}^2, \quad \sin^2 2\theta = 0.8,$ $P(v_e \rightarrow v_\mu) \quad L_1$ 0.80.6 $\sin^2 2\theta$ v_e , 0.4 0.20 100 200 300 4000

The neutrinos travel a distance L_1 , over a time T.

Many of the initially ν_{α} neutrinos will behave as a different flavour ν_{β} .

A Review on Machine Learning for Neutrino Experiments

$E_{\nu} = 1 \,\text{GeV}$

L/km

Iowa State University

A crash course in Particle Physics – Neutrino Oscillations

A distance L_2 later most of the ν_{β} neutrinos will have oscillated back to ν_{α} .

The values of the oscillation parameters affect the rate of oscillations, as does the presence of a 3rd neutrino mass state.

A Review on Machine Learning for Neutrino Experiments

Iowa State University

12/11/2020

13

How we Build Neutrino Experiments – LOTS of Different Ways

A Review on Machine Learning for Neutrino Experiments

Karl Warburton

14

Iowa State University

What we aim to do in Neutrino Experiments – Energies

A Review on Machine Learning for Neutrino Experiments

Karl Warburton

Iowa State University

^{12/11/2020}

What we aim to do in Neutrino Experiments – Topologies

A Review on Machine Learning for Neutrino Experiments

Karl Warburton

Iowa State University

A Brief Introduction to Machine Learning

Algorithms whose performance for a given task improves with experience

Artificial Neural Network Algorithms

Dimensional Reduction Algorithms

Clustering Algorithms

Decision Tree Algorithms

A Review on Machine Learning for Neutrino Experiments

Karl Warburton

Regression Algorithms

Deep Learning Algorithms

Iowa State University

The Structure of Artificial Neural Networks (ANNs/DNNs)

- Simplest way to visualise a neural network.
- A large collection of interconnected neurons which each
 - Take in a number of individually weighted inputs
 - Employ mathematical functions, activation weights, to calculate an output weight which is passed to future neurons.
- Neurons are connected in layers allowing the network to learn about the inputs.
 - Arbitrary number of hidden layers.
 - Neurons are ultimately connected to form an output score which the network is trained to achieve.

Karl Warburton

A Review on Machine Learning for Neutrino Experiments

Iowa State University

12/11/2020

18

The Structure of Artificial Neural Networks (ANNs/DNNs)

The inputs to the network are often extracted using traditional reconstruction methods.

Note, that they do not necessarily learn why certain inputs are correlated, just that they are.

Physics examples are things like decay kinematics.

A Review on Machine Learning for Neutrino Experiments

Karl Warburton

Iowa State University

The First Use of ANNs in Neutrino Physics

• Classified events using hit patterns.

 It did not achieve better separation than traditional methods.

 It showed that it was possible to do though, and lay the groundwork for these techniques to be explored.

 Modern analyses feature NNs across a wide range of applications.

The SNO Experiments first use of a DNN in the 1990s.

Network Assignment $\frac{CC/ES NC/ND}{True CC/ES 3809 1191}$ Class NC/ND 1295 3705 Overall Purity = $(75.1 \pm 0.4)\%$

Iowa State University

12/11/2020

20

Convolutional Neural Nets (CNNs)

Premise: Allow the network to extract features rather selecting them a-priori.

Removes any biases which may be introduced from the traditional reconstruction algorithms.

In Practice: Cast detector signals into maps and use CNNs to classify interactions in the style of image recognition. Use image kernels to do this from 2D arrays.

Traditionally use an image-to-RGB tensor strategy.

Iowa State University

Convolutional Neural Nets (CNNs)

The convolution layers use image

kernels for feature extraction.

Iowa State University

22

Convolutional Neural Nets (CNNs)

The convolution layers use image

kernels for feature extraction.

The pooling layers down-sample

the image, reducing computational

cost and emphasizing features.

A Review on Machine Learning for Neutrino Experiments

Iowa State University

12/11/2020

23

Why is Machine Learning Becoming Popular Now?

- A huge growth in computing power over the last decade.
 - Particularly GPU technology.
- At the same time, networks are becoming much more accurate, whilst requiring fewer computing resources.

- physics problem sets.

Modern experiments produce enormous datasets.

Some future experiments are ~30 PB per year!

Applications from industry are applicable to many

Iowa State University

Challenges involved in applying Machine Learning in **Neutrino Experiments**

#I:The Adaptability of methods.

6

GoogLeNet and The First Applications of CNNs

- Developed for the 2014 ImageNet Challenge (ILSVRC 2014).
- The first creatively non-sequential implementation of convolutional layers in CNNs.
 - Had significantly higher accuracy and performance improvements compared to its competitors.
- Neutrino experiments attempted to use it with few modifications.

Christian Szegedy¹, Wei Liu², Yangqing Jia¹, Pierre Sermanet¹, Scott Reed³, Dragomir Anguelov¹, Dumitru Erhan¹, Vincent Vanhoucke¹, Andrew Rabinovich⁴ ¹Google Inc. ²University of North Carolina, Chapel Hill

We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

1. Introduction

In the last three years, our object classification and detection capabilities have dramatically improved due to advances in deep learning and convolutional networks [10]. One encouraging news is that most of this progress is not just the result of more powerful hardware, larger datasets and bigger models, but mainly a consequence of new ideas, algorithms and improved network architectures. No new data sources were used, for example, by the top entries in the ILSVRC 2014 competition besides the classification dataset of the same competition for detection purposes. Our GoogLeNet submission to ILSVRC 2014 actually uses 12 times fewer parameters than the winning architecture of Krizhevsky et al [9] from two years ago, while being significantly more accurate. On the object detection front, the biggest gains have not come from naive application of big-

A Review on Machine Learning for Neutrino Experiments

Karl Warburton

Going Deeper with Convolutions

³University of Michigan, Ann Arbor ⁴Magic Leap Inc.

¹{szegedy, jiayq, sermanet, dragomir, dumitru, vanhoucke}@google.com ²wliu@cs.unc.edu, ³reedscott@umich.edu, ⁴arabinovich@magicleap.com

Abstract

ger and bigger deep networks, but from the synergy of deep architectures and classical computer vision, like the R-CNN algorithm by Girshick et al [6].

Another notable factor is that with the ongoing traction of mobile and embedded computing, the efficiency of our algorithms - especially their power and memory use - gains importance. It is noteworthy that the considerations leading to the design of the deep architecture presented in this paper included this factor rather than having a sheer fixation on accuracy numbers. For most of the experiments, the models were designed to keep a computational budget of 1.5 billion multiply-adds at inference time, so that the they do not end up to be a purely academic curiosity, but could be put to real world use, even on large datasets, at a reasonable cost.

In this paper, we will focus on an efficient deep neural network architecture for computer vision, codenamed Inception, which derives its name from the Network in network paper by Lin et al [12] in conjunction with the famous "we need to go deeper" internet meme [1]. In our case, the word "deep" is used in two different meanings: first of all, in the sense that we introduce a new level of organization in the form of the "Inception module" and also in the more direct sense of increased network depth. In general, one can view the Inception model as a logical culmination of [12] while taking inspiration and guidance from the theoretical work by Arora et al [2]. The benefits of the architecture are experimentally verified on the ILSVRC 2014 classification and detection challenges, where it significantly outperforms the current state of the art.

2. Related Work

Starting with LeNet-5 [10], convolutional neural networks (CNN) have typically had a standard structure stacked convolutional layers (optionally followed by con-

Iowa State University

GoogLeNet and The First Applications of CNNs – NEXT

Pixel maps used by the NEXT experiment.

Top, a coarse voxelation (10 mm voxels) where structure at the end of the track is lost.Outperforms traditional reconstruction byBottom, a fine voxelation (2 mm voxels) where this structure is still visible.between 20% and 60%.

A network designed to perform background rejection for neutrinoless double beta decay.
Equal numbers of signal and background events are used in training.

2D projections of the detector readout (XY,YZ, XZ) are used as the RGB input for the network.

GoogLeNet and The First Applications of CNNs – NOvA

- Network designed to perform interaction classification.
 - Subsequently extended to perform the identification of individual particles.

- The detector has two decoupled views, meaning that they cannot be combined into a single RGB tensor.
 - Therefore employs a Siamese architecture, with an input for each view.

- When first used in 2017, it increased effective exposure by 30%.
 - Was the first CNN to be used in a published particle physics result.

Found that training sign-dependant networks increased effectiveness.

A Review on Machine Learning for Neutrino Experiments

Spherical CNNs – Kamland-Zen

• A Spherical network achieves better background than their original network (71% vs 61%).

A Review on Machine Learning for Neutrino Experiments

Karl Warburton

Kamland-Zen is a near-spherical detector.

Translating that into a 2D space, can cause distortions.

• As such, the use of spherical CNNs is required.

 The kernel covers the whole phase-space by scanning Euler angles, avoiding such distortions.

Iowa State University

50 m |

1450 m

2450 m 2820 m

Graphical Neural Nets – IceCube

- IceCube is a very non-uniform detector which takes data that is very sparse.
 - It is therefore not well suited to CNNs.

- GNNs are designed to classify graphs, where the nodes define an element of the detector, and the edges show connections between elements.
 - Ideally places to mitigate the difficult aspects of data of IceCube.

- Developed a GNN to separate neutrino and cosmic induced events;
 - Identifies 630% more signal events than a CNN/traditional algorithm with a Signal-to-Noise ratio which is 3 times larger.

A Review on Machine Learning for Neutrino Experiments

Challenge #2: Quantifying Network Bias and Uncertainties

Humans know features which animals do and don't have.

We need to make sure that our algorithms do too.

A Review on Machine Learning for Neutrino Experiments

Karl Warburton

Iowa State University

The Dangers...

https://arxiv.org/pdf/1807.04975.pdf

(A) **Cow: 0.99**, Pasture: 0.99, Grass: 0.99, No Person: 0.98, Mammal: 0.98

(B) No Person: 0.99, Water: 0.98, Beach: 0.97, Outdoors: 0.97, Seashore: 0.97

The composition of training samples can constrain network performance by containing in-built model assumptions which may bias the results.

- Models are trained using simulated data;
 - Assumptions are made in generating such data on both the model and the detector performance.
 - Assumptions are made in selecting training dataset.
 - Simulation will never fully reproduce real data.

Though this is a well known problem, no standard and complete techniques exist to address it.

A Review on Machine Learning for Neutrino Experiments

- Model bias is a problem for all Machine Learning.
 - As the extracted features are abstract, CNNs are particularly susceptible to underlying model bias though.

Iowa State University

Carefully Constructed Training Datasets – EXO-200.

A network designed to perform charge-only energy reconstruction which was initially trained on a specific calibration source -228Th.

A systematic study found an unusually large improvement in the E_{res} for events in the ²⁰⁸Tl peak.

- Training on calibration data using a gamma-ray source located in the centre of the detector removed this unusually large improvement.
 - Studies repeated using a range of calibration sources at various locations yielded consistent results.

An unusually large improvement in the Energy Resolution is seen in the green line, which is not present in the Uniform Training.

Iowa State University

Domain Adversarial Neural Networks – MINERvA

- It is difficult to correct for, or quantify unknown biases.
 - It is possible to minimize their impacts though.
- The DANN used in MINERvA is a prime example.
 - A main network perform classification, whilst a second subnetwork is incorporated for bias reduction.

A Review on Machine Learning for Neutrino Experiments

- - the training to identify simulation/data differences.
 - The gradient reversal layer discourages the classification network from learning any of the
 - differences between the domains.

Karl Warburton

The domain sub-network incorporates real data into

Iowa State University

Quantifying Bias in Simulation vs Data - NOvA

- A process of Data Augmentation, known as Muon Removed, Electron Added seeks to quantify bias in NOvA.
 - Good agreement is found between comparisons of augmented data and simulation.
- A second process aims to further quantify bias, by studying muons from cosmic rays which decay in the detectors.

Iowa State University

Human Labelled Datasets – MicroBooNE

- Impossible to know the true identity of real data, though humans can often correctly identify it.
- Interestingly, when given identical datasets there will be differences between human and NNs.
 - Suggests unknown biases between humans to NNs.

- MicroBooNE created a human-labelled dataset to validate a semantic-segmentation network.
 - Trained on simulated events, with 5+ particles originating from a common vertex.
- Humans and the NN disagreement: $\sim 2\%$ of particles.

Bayesian Neural Networks

 Replace fixed value weights with probability distribution functions.

 The output is thus a probabilistic function which can be interpreted as most probable value.

 Thus able to convey a scale of uncertainty related to predictions which are outside of the scale of the training dataset.

Iowa State University

Challenge #3: Network Interpretability

- Deeper networks are more difficult to interpret.
 - The exact behaviour of individual kernels and how they combine to form the weights of a CNN is almost impossible to deduce.
 - This is much easier to do with boosted-decision-trees.

- Particularly troublesome for physicists who want to relate network features to underlying physics phenomena.
 - Knowing this could minimize or correct network inefficiencies.
 - Could also hint at specific features which are important to train against.

t-Distributed Stochastic Neighbour Embedding

• Widely used technique to interpret features, and establish a proxy for classification separation.

- Network features are transformed down to 2D.
 - Uses a non-linear transformation to do this.
 - Preserves separation between points, but with lower dimensionality.

 A t-SNE from the Daya Bay Experiment to separate anti-neutrinos from nearby reactors with experimental backgrounds.

Iowa State University

Principal Component Analysis (PCA) and Salience Maps

- PCA produces vectors along dimensions of maximal variation in the data
 - Vectors are orthogonal, and often performed on input data to reduce the number of inputs required.
 - Can also be performed on extracted features to reduce dimensionality for visualisation, similar to a t-SNE.

- Also possible to identify which features are important to CNNs.
 - Occlusion tests obstruct regions of an input image to find important features.
 - Salience maps show what features the network uses to make determinations.
 - Salience maps sometimes show that the network uses contextual information to make it's determinations.

Iowa State University

Challenge #4: Computational & System Constraints

- ML in neutrino experiments uses huge resources;
 - Neutrino experiments record billions of events a year.
 - Neural nets perform $>10^9$ floating point operations.
 - Widespread use of large-spread computing clusters such as the Open Science Grid to perform evaluation on CPUs.

A Review on Machine Learning for Neutrino Experiments

- Small-scale GPU clusters often used for training.
- Large-scale GPU required for evaluation.
 - Currently no GPU computing clusters similar to the CPU
 - OSG exists.

Karl Warburton

Iowa State University

Improving Efficiency of Computing Resources

Liquid Argon Time Projection Chambers (LArTPCs) are globally sparse, but locally dense.

- - - or sum together zeros.

Multi-task networks can reduce overall computational load. Networks that identify neutrino flavour, can also be trained to identify neutrino sign, type of interaction and final state particles.

Smaller networks often use fewer resources, but at the cost of reduced performance for high complexity applications.

It is also possible to reduce the number of operations;

The structure of LArTPC data means that many CNNs multiply

Using submanifold sparse CNNs can reduce inference times by a factor of 30, and the memory cost by a factor of 300.

Iowa State University

Challenge #5: Dataset Availability

Open datasets are commonplace in data science applications.

However, they are still not widely used in particle physics.

Open datasets would allow multidisciplinary research and would likely result in improve the quality and physics reach of algorithms.

> This would require revisions to both authorship and data-sharing policies of experiments.

This is constrained by strict data-sharing restrictions. Efforts are underway to change this, such as the TrackML challenge by LHC experiments.

The Future Opportunities Offered by Machine Learning

6

Applications to Control and Manage Data Rates

- FPGAs in future detectors offer the chance to manage the huge data rates of future experiments using CNNs.
 - Will require online data processing of terabits per second continuously for more than 20 years.
- The use of Machine Learning in triggers offer the chance to expand the physics reach of experiments.
 - Already seen in LHC experiments, and may reduce energy thresholds in LArTPC experiments by an order of magnitude.

A Review on Machine Learning for Neutrino Experiments

Karl Warburton

DUNE will search for rare, low energy interactions which are dominated by the constant backgrounds from electronics and radioactivity.

Iowa State University

How Neutrino Physics Can Contribute to Machine Learning

- Quantitative results and careful statistical analyses.
 - Consideration of systematic effects and bias is crucial to particle physics.
 - As ML becomes more widespread in physics, there will be increased efforts in understand this.
 - Key overlaps with ethical, and security concerns in wider ML applications.

• Use of simulated datasets corresponding to real data.

- Unlike most industry applications, particle physics trains on simulations.
- These simulations can be tuned at will, making it possible to study networks behaviour under controlled modifications.
- Comparing data and simulations can improve studies in domain transfer.

Iowa State University

Physics Studies That Can Benefit Wider ML Applications

- NOvA found that adding contextual information to a particle identification network improved performance.
 - Has four Siamese towers, two for particle-only cluster, and two with the full event for contextual information.
 - Improves performance by 11%.

- add context to a network.
- industry applications.

First technique to employ a Siamese architecture to

Bountiful scenarios for synergy between academic and

Exploration will undoubtedly improve both fields.

Iowa State University

Summary

Neutrino experiments using a myriad of technologies to study numerous physics processes applying ML in the process.

ML algorithms have been adapted for a range of applications including classification, energy reconstruction, Monte Carlo generation and bias reduction.

Many of the challenges arising from applying ML have been overcome, though many challenges still remain.

Future applications of neutrino physics can contribute to the development of ML in wider applications.

A Review on Machine Learning for Neutrino Experiments

Karl Warburton

https://arxiv.org/abs/2008.01242

Iowa State University