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APPROXIMATE SUPER-RESOLUTION AND TRUNCATED

MOMENT PROBLEMS IN ALL DIMENSIONS.

HERNÁN GARCÍA, CAMILO HERNÁNDEZ, MAURICIO JUNCA,
AND MAURICIO VELASCO

Abstract. We study the problem of reconstructing a discrete measure on
a compact set K ⊆ Rn from a finite set of moments (possibly known only

approximately) via convex optimization. We give new uniqueness results, new

quantitative estimates for approximate recovery and a new sum-of-squares
based hierarchy for approximate super-resolution on compact semi-algebraic

sets.

1. Introduction

Let K ⊆ Rn be a compact set and let V be a finite-dimensional vector space of
continuous real-valued functions on K. If L : V → R is linear and µ is a finite borel
measure on K then µ represents L in V if L(f) =

∫
K
fdµ for all f ∈ V . In this

article we study the discrete reconstruction problem which, given a representable

operator L, asks us to find a discrete measure µ∗ :=
∑k
i=1 ciδxi with ci ≥ 0 and

xi ∈ K which represents L on V .
Under very general conditions, such measures µ∗ exist (see Lemma 2.1 for de-

tails). Moreover, constructing explicit solutions µ∗ is useful in a wide variety of
applications, for instance:

(1) Polynomial optimization: via Lasserre’s method of moments [L1] one can
find a representable operator L such that every representing measure is
supported on minimizers of a given multivariate polynomial.

(2) Numerical integration: any representing measure µ∗ gives us a cubature
rule [L2] for computing integrals of functions in V with respect to the
measure µ via evaluation.

(3) Optimal control theory: optimal control problems can be reformulated as
problems on occupation measures as in [LHPT]. Any discrete measure rep-
resenting optima gives us explicit optimal control policies.

A celebrated approach to solve the reconstruction problem goes by the name of
superresolution [CFG, FG] or of Beurling minimal interpolation [dCG, AdCG] and
consists of finding a minimizer µ∗ of the total variation norm in the set S(K) of all
signed Borel measures on K. More precisely, letting ‖µ‖TV := sup

∫
K
gdµ as g runs

over all continuous functions g on K with ‖g‖∞ ≤ 1 we want to solve the problem

(1) min
ν∈S(K)

‖ν‖TV : ∀f ∈ V
(∫

K

fdν = L(f)

)
2000 Mathematics Subject Classification. Primary 15A29 Secondary 15B52,52A22.
Key words and phrases. Super-resolution, Compressed sensing, truncated moment problems.
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Our first result is a uniqueness theorem for recovery of discrete measures extend-
ing a result of De Castro and Gamboa [dCG, Theorem 2.1] to positive measures
in dimension greater than one. Let V≤d be the set of real-valued polynomials of
degree ≤ d in the variables x1, . . . , xn. Recall that a finite set of points X ⊆ Rn
has an ideal I(X) consisting of all polynomials vanishing on X, a generator degree
g(X) defined as the maximum degree of a minimal generator of I(X) and an inter-
polation degree i(X) defined as the minimum degree d such that every real-valued
function on X is given by the restriction to X of a polynomial of degree at most d.

Theorem 1.1. For an integer k, let X ⊆ Rn be a set of k points and let V := V≤d.
If d ≥ max(2g(X), i(X)) then any discrete measure µ supported on X is the unique
minimizer of (1) with L(f) :=

∫
K
fdµ. Moreover max(2g(X), i(X)) ≤ 2(k−n+ 1)

for every set X of size k which is not contained in any hyperplane in Rn.

In applications one is often interested in measures whose support X is not an
arbitrary set of points but rather a generic set of points X = {p1, . . . , pk}, mean-

ing that (p1, . . . , pk) lie in the complement of a given algebraic set of (Rn)
k

(see
Section 2.3 for details). For such sets we can strengthen the upper bound in the
previous Theorem and provide a lower bound on d below which uniqueness is lost.

Theorem 1.2. If X is a generic set of k points in Rn then:

(1) The interpolation degree i(X) equals the smallest integer e for which the
inequality k ≤

(
n+e
e

)
holds.

(2) The inequality g(X) ≤ i(X) + 1 holds. In particular, if d ≥ 2(i(X) + 1)
then any discrete measure µ supported on X is the unique minimizer of (1)
with V := V≤d.

(3) For all d such that
(
n+d
d

)
≤ k(n + 1) problem (1) does not have a unique

solution for every measure µ supported on X.

For this approach to be useful we need a procedure for carrying out the opti-
mization in (1). This can be done either via discretization as in [FG, D] or via
sum-of-squares hierarchies as De Castro, Gamboa, Henrion and Lasserre propose
in [DCGHL]. Since we are working in the context of reconstructing positive mea-
sures (not signed measures) one can also use a simple moment relaxation which
is guaranteed to work under the hypotheses of Theorem 1.1 (see Section 3.1 for
details). In Section 5 we show that this procedure works well in practice via several
numerical examples in dimensions 1, 2 and 4.

In many applications of the measure reconstruction problem, however, the mo-
ments of the measure are known only approximately. More precisely, we fix a basis
φ1, . . . , φm for V and would like to recover a point measure µ from a known vector
y with components given by yi =

∫
K
φidµ + εi where ε := (ε1, . . . , εm) is a noise

term with magnitude ‖ε‖2 ≤ δ bounded by a known value δ. A very significant
contribution in this setting is the work of Azais, De Castro and Gamboa [AdCG]
who give quantitative estimates for the error when the recovery mechanism is to
solve the following Beurling Lasso (BLASSO) optimization problem:

(2) min
ν∈S(K)

‖ν‖TV :

∥∥∥∥∥
(∫

K

φidν − yi
)
i=0,...,m

∥∥∥∥∥
2

≤ δ

Our next result uses their ideas to give a quantitative localization bound for
discrete measures valid in all dimensions. If ∆ is a discrete measure and z ∈ K we
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will write ∆(z) to mean the coefficient of δz in the unique decomposition of ∆ as a
sum of Dirac measures. We will write d(X, z) for the euclidean distance between a
point z and a set X and write N(X, δ) (resp. F (X, δ)) for the set of points which
are at distance at most (resp. at least) δ from X.

Theorem 1.3. Let µ be any discrete measure supported on a finite set X and let
∆̂ be a discrete minimizer of (2) with V = V≤d, yi :=

∫
φidµ+ εi and ‖(εi)i‖2 ≤ δ.

If d ≥ 2g(X) and φ0, . . . , φm are an orthonormal basis for V with respect to some
probability measure on K then there exist constants Ca > 0 and 0 < Cb < 1

depending only on X such that if c0 :=
√

Cb
Ca

then the following statements hold:

(1) If z ∈ K is such that ∆̂(z) > 2δ
Cb

then d(X, z) ≤ c0.

(2) The following inequalities hold:∑
z∈N(X,c0),∆̂(z)>0

∆̂(z)d(X, z)2 ≤ 2δ

Ca∑
z∈F (X,c0),∆̂(z)>0

∆̂(z) ≤ 2δ

Cb∑
z:∆̂(z)<0

|∆̂(z)| ≤ 2δ

In order to apply Theorem 1.3 we must be able to solve the (infinite-dimensional)
optimization problem (2). Our next Theorem recasts (2) as a finite-dimensional
convex optimization problem extending the main results of De Castro, Gamboa,
Henrion and Lasserre in [DCGHL] to the approximate recovery problem.

Theorem 1.4. The optimal value of (2) coincides with the optimal value of the
following finite-dimensional convex optimization problem

(3) sup
(~a,b)∈Rn×R

{
〈~a, y〉 − bδ : P =

m∑
i=1

aiφi, ‖P‖∞ ≤ 1, ‖~a‖2 ≤ b

}
Next we propose a hierarchy of semidefinite programs for solving (3) when K is

semialgebraic and explicitly bounded and V ⊆ R[~x] := R[x1, . . . , xn]. To describe
the hierarchy we will need the following basic definition. If g1, . . . , gt ∈ R[~x] and
e > 0 is an integer define the quadratic module of degree e of g1, . . . , gt as

Qe(g1, . . . , gt) =

{
f ∈ R[~x] : ∃(si)i=0,1,...,t such that f = s0 +

t∑
i=1

gisi

}
.

where the si ∈ R[~x] are sums-of-squares of polynomials of degree bounded by e.

Henceforth we let ~φ = (φ1, . . . , φm) be the vector whose components are our chosen
basis for V .

Theorem 1.5. Suppose K = {x ∈ Rn : g1(x) ≥ 0, . . . , gt(x) ≥ 0} for some
gi ∈ R[x1, . . . , xn] and assume there exist positive integers N, e such that N−‖x‖22 ∈
Qe(g1, . . . , gt). If αs denotes the number

αs = sup
(~a,b)∈Rn×R

{
〈~a, y〉 − bδ : 1− 〈~a, ~φ〉, 1 + 〈~a, ~φ〉 ∈ Qs(g), ‖~a‖2 ≤ b

}
.

then the following statements hold:
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(1) For each s the number αs is the optimal value of a semidefinite programming
problem.

(2) The equality lims→∞ αs = α holds where α is the optimal value of prob-
lem (3).

In Section 5 we use Theorem 1.5 for carrying out BLASSO minimization to
recover discrete measures and show that we obtain good approximations in dimen-
sions one and two.

Finally we propose a new application of super-resolution for finding good ap-
proximate discretizations of general probability measures on K in a sense to be
defined. Fix a family of polynomials φ1, . . . , φm which is orthonormal with respect
to some probability measure on K and which spans V := V≤d.

Definition 1.6. A (δ, k)-summary of a (not necessarily discrete) measure µ on K
with respect to φ1, . . . , φm is a measure ∆ with at most k-atoms for which the
following inequality holds∥∥∥∥∥

(∫
K

φidµ−
∫
K

φid∆

)
i=1,...,m

∥∥∥∥∥
2

≤ δ

We will assume we know the exact values of the moments of a measure µ on K
and that we would like to find a (δ, k) summary (for given δ and k). The following
Theorem shows that if such a summary exists then it is possible to use super-
resolution to approximate it. Let i(X) be the number defined in Theorem 1.2 part
(1).

Theorem 1.7. Suppose ∆ is a (δ, k) summary of µ supported on a set X and let

∆̂ be a discrete minimizer of the problem

(4) min
ν∈S(K)

‖ν‖TV :

∥∥∥∥∥
(∫

K

φidν −
∫
K

φidµ

)
i=0,...,m

∥∥∥∥∥
2

≤ δ.

If d ≥ 2g(X) then the conclusions of Theorem 1.3 hold for ∆̂.

Based on the previous Theorem we propose taking the k largest coefficients
of a discrete minimizer ∆̂ of (4) if such a minimizer exists as an algorithm for
summarization. In Section 5 we present numerical examples of summarization
of some measures in dimensions one and two. Our examples in dimension one
show that the summarization procedure recovers good approximations of the Gauss-
Chebyshev quadrature rule and suggests ways to generalize it to higher dimensions.

Acknowledgements. We wish to thank Greg Blekherman and Fabrice Gamboa
for very useful conversations during the completion of this project. M. Junca and
M. Velasco were partially supported by the FAPA funds from Universidad de los
Andes.

2. Preliminaries

2.1. Representability via discrete measures. Let K ⊆ Rn be a compact set
and let V be a finite-dimensional vector subspace of the space C(K) continuous
real-valued functions on K. By a measure on K we will always mean a positive
measure. We will use the term signed measure to refer to these. By a discrete
measure on K we mean a conic combination of Dirac delta measures supported at
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points of K. If ν is a finite Borel measure on K let Lν : C(X) → R be the map
given by Lν(f) :=

∫
K
fdν. We say that an operator L : V → R is representable

by a measure if there exists a finite Borel measure ν such that L(f) = Lν(f) for
every f ∈ V . The following Lemma, due to Blekherman and Fialkow [BF], explains
the key role played by discrete measures in truncated moment problems. It is a
generalization of results of Tchakaloff [T] and Putinar [P]. We include a proof for
the reader’s benefit.

Lemma 2.1. If the functions in V have no common zeroes on K then every linear
operator L ∈ V ∗ representable by a measure is representable by a discrete measure
with at most dim(V ∗) + 1 atoms.

Proof. Let P ⊆ V be the closed convex cone of functions in V which are nonnegative
at all points of K. It is immediate that P = Conv(Lδx : x ∈ K)∗. By the bi-duality

Theorem from convex geometry we conclude that P ∗ = Conv(Lδx : x ∈ K). Now
consider the map φ : K → V ∗ sending a point x to the restriction of Lδx (i.e. to
the evaluation at x). This map is continuous and therefore S := φ(K) is a compact
set. Since the functions in V have no points in common the convex hull of S does
not contain zero and therefore the cone of discrete measures Conv(Lδx : x ∈ K) is
closed in V ∗. Let M(V ) ⊆ V ∗ be the cone of operators representable by a finite
borel measure. Since Conv(Lδx : x ∈ K) ⊆ M(V ) ⊆ P ∗ we conclude that M(V )
equals the cone of discrete measures as claimed. The bound on the number of atoms
follows from Caratheodory’s Theorem [B]. �

2.2. Ideals and coordinate rings of points in projective space. Suppose
X ⊆ Rn is a finite set of points of size k. To be able to make arguments with graded
rings we will embed X in the real projective space Pn. For basic background on
graded rings and projective space the reader should refer to [CLO, Chapter 1,2,8].

We endow Pn with homogeneous coordinates [X0 : · · · : Xn] and identify Rn with
the open subset of Pn where X0 6= 0 via the map φ(x1, . . . , xn) = [1 : x1 : · · · : xn].
We identify X with its image under φ and define the homogeneous coordinate
ring of X as A := R[X0, . . . , Xn]/I(X) where I(X) is the ideal generated by all
homogeneous polynomials vanishing at all points of X. Since X ⊆ Pn, the ring
A is standardly graded (i.e. At := R[X0, . . . , Xn]t/I(X)t) and is generated, as
an algebra over R, by elements of degree one. Denote by HF (A, t) := dimRAt
the Hilbert function of A. The following Lemma summarizes some key basic facts
about the homogeneous coordinate ring of a set of k points in Pn. These are well
known classical results in algebraic geometry for which we provide a self-contained
elementary proof (see [E, Chapter 3] for further background on ideals of points in
projective space).

Lemma 2.2. The following statements hold:

(1) The Hilbert function of A is strictly increasing until it attains the value k
and then becomes constant.

(2) The equality i(X) = min{t : HF (A, t) = k} holds and i(X) ≤ k − 1.
(3) The degree of every minimal homogeneous generator of I(X) is bounded

above by α(X) := i(X) + 1.

Proof. (1) Let ` ∈ A be a linear form which does not vanish at any point of X (for
instance X0). If F ∈ A satisfies `F = 0 then F must vanish at all points of X and
therefore F = 0 in A. We conclude that multiplication by `, m` : At → At+1 is
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injective for every t ≥ 0 proving that HF (A, t) is non-decreasing. Let B := A/(`)
and note that for every t we have Bt = 0 if and only if HF (A, t) = HF (A, t − 1).
Since B is generated in degree one the equality Bt = 0 for some t implies that Br = 0
for all r ≥ t. We conclude that if t satisfies HF (A, t) = HF (A, t − 1) then the
Hilbert function becomes constant after t, proving (1). (2) For any t ∈ N consider
the linear map φ∗ : At → Fun(X,R) which maps F (X0, . . . , Xn) to the polynomial
function F (1, x1, . . . , xn) of degree at most t on X. This map is always injective
and is therefore surjective whenever the dimension of At equals the dimension k
of the space of all real-valued functions on X. To prove the inequality note that
HF (A, 0) = 1 and that it increases strictly at every stage so HF (A, k − 1) ≥ k so
i(X) ≤ k − 1.

(3) Let J be the ideal generated by I(X)≤α(X) and let S := R[X0, . . . , Xn]. Since
J ⊆ I(X) there is a surjective homomorphism A′ := S/J → A and we will show that
it is an isomorphism by proving that dimA′t = dimAt for all t. Define D := A′/(`)
and note that it satisfies Dj = Bj for j ≤ α(X) and in particular Dα(X) = 0.
Since D is generated in degree one this implies that Dq = 0 for all q ≥ α(X) and
therefore multiplication by ` is surjective on A′ in all components t ≥ α(X). We
conclude that dimA′t ≥ dimA′t+1 for t ≥ α(X) and in particular k ≥ dimA′s for
s ≥ α(X). By surjectivity of A′ → A we know that dimA′t ≥ dimAt = k for
t ≥ α(X). Putting both inequalities together we conclude that dimA′t = dimAt
for all t as claimed.

�

Remark 2.3. The number α(X) is the Castelnuovo-Mumford regularity of X, the
key measure of the (cohomological) complexity of algebraic varieties [M] (see [E,
Chapter 4] for details).

2.3. Generic points. A property of k-tuples of points (p1, . . . , pk) ∈ (Pn)k holds
generically if the locus of points (p1, . . . , pk) which satisfy it contains a nonempty
Zariski open set. Equivalently, the set of points where the property fails is con-
tained in a proper Zariski closed subset of (Pn)k (i.e. one defined by homogeneous
polynomial equations). Following common terminology we say that a generic set of
points X of size k satisfies a property Q to mean that property Q holds generically.
If p1, . . . , pk are an independent sample of points in Rn sampled from a distribution
which has a density with respect to the Lebesgue measure then p1, . . . , pk satisfies
every generic property with probability one (because every proper Zariski closed
set has empty interior and in particular null Lebesgue measure). Understanding
generic properties should therefore be of much interest for applications.

3. A basic uniqueness result for exact super-resolution.

Proof of Theorem 1.1. Let µ :=
∑
x∈X cxδx for some real coefficients cx ≥ 0 and let

h1, . . . , hk be a set of generators of the ideal I(X) of polynomials vanishing on X.
Define H :=

∑
h2
i and M := supx∈K H(x). By our assumption on d the polynomial

P := 1− H
M belongs to V≤d. We will show that P is a dual certificate in the sense

of Candés, Romberg and Tao [CRT].
By construction we know that ‖P‖∞ = 1 and that P (z) = 1 if and only if z ∈ X.

If ∆ is a feasible solution of (1) then

‖µ‖TV = µ(X) =

∫
K

Pdµ =

∫
K

Pd∆ ≤ ‖∆‖TV
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and therefore any optimal solution ∆ of (1) satisfies ‖µ‖TV = ‖∆‖TV. For ∆ an
optimal solution of (1) we write ∆ = ∆X + ∆⊥X where ∆X is supported on X and
∆⊥X in K \X. Since |P (z)| < 1 outside X we conclude that

∫
K
Pd∆⊥X < ‖∆⊥X‖TV

if ∆⊥X 6= 0. It follows that

‖∆‖TV =

∫
K

Pd∆ < ‖∆X‖TV + ‖∆⊥X‖TV = ‖∆‖TV

a contradiction so ∆⊥X = 0 and every minimizer ∆ is supported on X. Since
d ≥ i(X) there exists, for each point x ∈ X a polynomial qx in V≤d which takes value
one in x and zero at all other points of X. Since

∫
K
qxdµ =

∫
K
qxd∆ we conclude

that ∆ = µ as claimed. By Lemma 2.2 part (3) we know that α(X) = 1 + i(X)
satisfies g(X) ≤ α(X) and therefore max(2g(X), i(X)) ≤ 2α(X). If X is not
contained in any hyperplane then dim(A1) = n + 1 and therefore by Lemma 2.2
part (1) dim(At) ≥ n + t for all 1 ≤ t ≤ i(X) and we conclude that i(X) ≤ k − n
so α(X) ≤ k − n+ 1, proving the claim. �

Remark 3.1. If X ⊆ R consists of k points then it is immediate that g(X) = k and
i(X) = k + 1 so our Theorem proves uniqueness for d ≥ 2k, giving another proof
of [dCG, Proposition 2.3]. This upper bound is sharp since the dimension of the
space of discrete measures supported at k points of R is 2k (one for the location and
another one for the coefficient for each support point). An identical sharp bound
is obtained for any set of points X ⊆ R2 which lie on a conic and in particular for
any set of at most 5 points in R2.

Proof of Theorem 1.2. (1) The Hilbert function of the homogeneous coordinate ring
A of a generic set of k points in Pn is given by

HF (A, t) = min

((
n+ t

t

)
, k

)
which agrees with k for the smallest e with

(
n+e
e

)
≥ k as claimed.(2) By Lemma 2.2

we know that α(X) = i(X) + 1 and max(2g(X), i(X)) ≤ 2α(X) proving the claim.
(3) Suppose the discrete measure µ is supported on X and is the unique minimizer
of (1). It follows from strong duality [DCGHL, Lemma 1] that there exists a
polynomial G∗ which is optimal for the dual optimization problem

max
G∈V≤d

L(G): ‖G‖∞ ≤ 1 on K

where L : V≤d → R is defined by L(G) :=
∫
K
Gdµ. and in particular that there

exists a nonnegative polynomial F := 1 − G∗ of degree d vanishing at all points
of X. Since F is nonnegative we conclude that F is singular (i.e. has vanishing
gradient) at all points of X. Since X consists of generic points, vanishing with
multiplicty at least two at all of them imposes k(n+ 1) independent conditions and

therefore such F do not exist whenever
(
n+d
d

)
≤ k(n+ 1) as claimed. �

Remark 3.2. The maximum in the quantity max(2g(X), i(X)) of Theorem 1.1 can
be achieved in either side as the following examples show. If X is a complete
intersection of n quadrics then g(X) = 2 and i(X) = n − 1 so the interpolation

degree is larger than 4 = 2 · 2 for n ≥ 5. If X is a generic set of
(
d+n
n

)
points in

Pn then g(X) = i(X) = d + 1 so 2g(X) > i(X). The second example shows that
the inequality max(2g(X), i(X)) ≤ 2α(X) is sharp since it becomes an equality for
this choice of points.
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Remark 3.3. The degrees of all minimal generators, and more generally the struc-
ture of the minimal free resolutions of ideals of points in P2 are well understood
(See [E, Chapter 3] for details). By contrast the minimal free resolution of even
generic sets of points s in Pn is widely open. The conjectural answer suggested by
Lorenzini [L] was later disproved in celebrated work by Eisenbud and Popescu [EP].

3.1. A moments relaxation. Mirroring the proof of Theorem 1.1 one can use the
following problem of moments reconstruction procedure for recovering µ given its
moments operator L : V≤2d → R with L(g) :=

∫
K
gdµ on polynomials of degree at

most 2d.

(1) Finding the support of µ by constructing a minimizer H∗ of the optimization
problem minH L(H) where H runs over the sums-of-squares of elements of

V≤d. More explicitly if ~φ is a basis for V≤d then we find H∗ by solving the
semidefinite programming problem:

minL
(
~φtA~φ

)
s.t. A � 0 and tr(A) = 1.

and find the support of µ by finding the zeroes of H∗ in K.
(2) Finding the coefficients of µ by linear algebra. If z1, . . . , zk are the zeroes

of H∗ we find the coefficients c1, . . . , ck by solving the linear equations∑k
i=1 cif(zi) = L(f) for f ∈ V .

Theorem 1.1 guarantees that the procedure works for sufficiently high d and The-
orem 1.2 gives a better guarantee for measures supported on generic points. We
finish the Section with two remarks about the above procedure:

(1) If H∗ is any minimizer in the relative interior of the face L(H) = 0 of
convex cone Q of the sums-of-squares of elements in V≤g(X) has X as its
only real zeroes since otherwise evaluation at any additional zero would
define a proper face of Q containing an interior point and hence all of Q.
In particular the kernel of this evaluation would contain the dual certificate
constructed in the proof of Theorem 1.1 all of whose real zeroes lie on X
deriving a contradiction. As a result, interior point numerical methods for
solving the SDP would produce optima H∗ with X as its set of zeroes, as
can be seen in our numerical examples in Section 5.

(2) If X is a generic set of k =
(
e+n
n

)
points in Pn then g(X) = i(X) = e+1 and

Theorem 1.2 shows that there is unique recovery when d ≥ 2(e + 1). We
claim that, if the recovery is carried out with the sum-of-squares procedure
above then this bound is sharp in the sense that the recovery would fail for
d < 2(e + 1). The reason is that every sum of squares H =

∑
P 2
i which

vanishes at the points would have summands Pi of degree less than e + 1
and therefore be identically zero on X because I(X) contains no forms of
degree less than e+ 1.

4. Approximate recovery

In this section we focus on the problem of approximate recovery. The follow-
ing key property was proposed by Azais, De Castro and Gamboa as central for
BLASSO quantitative localization results. We modify their definition slightly since
our interest is only measures and not signed measures.

Definition 4.1. (Quadratic isolation condition)[AdCG, Definition 2.2] A finite
set X ⊆ K satisfies a quadratic isolation condition with parameters Ca > 0 and
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0 < Cb < 1 respect to V if there exists P ∈ V satisfying ‖P‖∞ ≤ 1 on K, P ≡ 1
on X and such that the following inequality holds

∀z ∈ K
(
P (z) ≤ 1−min{Cad(z,X)2, Cb}

)
Lemma 4.2. If d ≥ 2g(X) then X satisfies a quadratic isolation condition on V≤d.

Proof. Let h1, . . . , hk be a set of minimal generators of the ideal I(X) of polynomials
vanishing on X and define H :=

∑
h2
i and M := supx∈K H(x). By our assumption

on d the polynomial P := 1 − H
M is nonnegative, belongs to V≤d and is identical

to one on X. Since h1, . . . , hk are generators of the ideal I(X) and a reduced
set of points is nonsingular the differential of the map H : Rn → Rk given by
H(x) = (h1(x), . . . , hk(x)) has trivial kernel at every x ∈ X. As a result, the
Hessian at x ∈ X of the polynomial H is strictly positive definite and in particular
there exist positive real numbers ηx and (Ca)x such that 1−P (z) ≤ (Ca)x‖z−x‖2
for z with ‖z − x‖ ≤ ηx. Define δ = minx∈X ηx, Ca := minx∈X(Ca)x and let
Cb = supz:d(z,X)≥ δ2

(1− P (z)). We conclude that X satisfies a quadratic isolation

condition with parameters Ca and Cb with 0 < Cb < 1 and Ca > 0. �

The following Lemma, of interest in its own right, extracts the essence of [AdCG,
Theorem 2.1]. Note that we do not require the basis φi to be orthonormal.

Lemma 4.3. Suppose X satisfies a quadratic isolation condition on V with witness
P . If ∆̂ is a minimizer of (2) then the inequalities

0 ≤ ‖∆̂‖TV −
∫
K

Pd∆̂ ≤ 2δ‖a‖2

hold, where a is the vector of coefficients of P in the basis φi of V .

Proof. Since the measure µ is feasible for (2) we know that ‖µ‖TV ≥ ‖∆̂‖TV. Since
P satisfies ‖P‖∞ ≤ 1 on K we know that

‖∆̂‖TV ≥
∫
K

Pd∆̂ =
∑

ai

∫
K

φid∆̂ =
∑

ai

(
ri +

∫
K

φidµ+ εi

)
where ri :=

∫
K
φid∆̂ − yi and yi =

∫
K
φidµ + εi. Since

∑
ai
∫
K
φidµ =

∫
K
Pdµ =

‖µ‖TV we conclude that

‖µ‖TV +
∑

ai(ri + εi) ≤
∫
K

Pd∆̂ ≤ ‖∆̂‖TV ≤ ‖µ‖TV

So the difference between the last and first terms is an upper bound for the difference
between the interior terms yielding

0 ≤ ‖∆̂‖TV −
∫
K

Pd∆̂ ≤
∣∣∣∑ ai(ri + εi)

∣∣∣ ≤ ‖a‖2 (‖r‖2 + ‖ε‖2) ≤ 2δ‖a‖2

where the last two inequalities follow from the Cauchy-Schwartz and triangle in-
equalities. �

We are now in a position to prove our main result on approximate recovery

Proof of Theorem 1.3. By Lemma 4.2 the set X satisfies a quadratic isolation con-
dition with parameters Ca > 0 and 0 < Cb < 1. Let P be the witness constructed
in the Lemma. Since the basis φ is assumed to be orthonormal with respect to a
probability measure on K, Parseval’s equality shows that the vector a of coefficients
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of P in the basis φi satisfies ‖a‖22 agrees with the L2-norm of P with respect to the
probability measure that makes the φi orthonormal. It follows that this norm is
bounded by one since ‖P‖∞ ≤ 1. By Lemma 4.3 we know that any minimizer ∆̂
of problem (2) satisfies

0 ≤ ‖∆̂‖TV −
∫
K

Pd∆̂ ≤ 2δ‖a‖2 ≤ 2δ

We compute the quantity in the middle with ∆̂ =
∑
z∈K ∆̂(z)δz. Separating the

coefficients into three sets, negative coefficients, and two sets of positive coefficients
according to which of the two terms achieves the minimum in min{Cad(z,X)2, Cb}
we obtain, since P ≥ 0, the inequality

2δ ≥
∑

∆̂(z)<0

|∆̂(z)|+
∑

∆̂(z)>0,d(z,X)2≤ Cb
Ca

∆̂(z)Cad(z,X)2 +
∑

∆̂(z)>0,d(z,X)2>
Cb
Ca

∆̂(z)Cb

from which the three inequalities in part (2) of the Theorem follow immediately. �

4.1. An algorithm for approximate super-resolution. In this section we focus
on solving problem (2). We begin by proving Theorem 1.4 which reformulates (2) as
a finite-dimensional convex optimization problem amenable to computation when-
ever (2) has a discrete minimizer.

Proof of Theorem 1.4. During the proof we will identify problem (3) with the dual
of (2) and prove that there is no duality gap. To do this we first reformulate (2) as a
primal problem in standard form (as in [B, Section 7.1]). Recall that a signed Radon
measure ν admits a unique Hahn decomposition as a difference of Radon measures
ν+ and ν− and that in this decomposition the total variation is given by ‖ν‖TV =
ν−(K) + ν+(K) which is a linear function in ν+,ν−. The ambient vector space of
our primal optimization problem will be E = C(K)∗ × C(K)∗ × Rm × R endowed
with the weak ∗-topology. We will denote its elements by 4-tuples (ν−, ν+, ~z, w).
Define the convex cone

D := {(ν−, ν+, ~z, w) : ‖~z‖2 ≤ w and ν+, ν− ∈ R(K)+}

where R(K)+ denotes the cone of positive radon measures on K. The continuous
dual of E, denoted E∗ is given by E∗ := C(K)×C(K)×Rm×R and we will write
its elements as 4-tuples (f1, f2,~a, b). In this notation the dual cone D∗ ⊆ E∗ is
given by:

D∗ := {(f1, f2,~a, b) : ‖~a‖2 ≤ b and f1, f2 ≥ 0 on K} .
To simplify the notation we will write

∫
K
fdν := 〈f, ν〉. Define the continuous

linear map A : E → Rm × R by the formula

A(ν−, ν+, ~z, w) =
(

(〈φi, ν+ − ν−〉 − zi)i=1,...,m , w
)

and note that problem (2) is equivalent to

min
(ν−,ν+,~z,w)∈D

〈1, ν+ + ν−〉 s.t. A(ν−, ν+, ~z, w) = (~y, δ)

its dual problem is therefore given by (see [B, Section 7.1]

sup
(f1,f2,~a,b)

〈~a, y〉+ δb s.t. (1, 1, 0, 0)−A∗(~a, b) ∈ D∗.
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By definition of adjoint we have A∗(~a, b) =
(
〈~a, ~φ〉,−〈~a, ~φ〉,−~a, b

)
so the dual is

equivalent to (3) after the change of variables b → −b. To prove the Theorem we
will show that there is no duality gap. Since the objective function is nonnegative
and the domain of the problem is nonempty (because its feasible set contains the
measure µ which we would like to recover) by [B, Theorem 7.1] it suffices to prove

that Â(D) ⊆ Rm+2 is closed where Â : E → R× Rm × R is given by

Â(ν−, ν+, ~z, w) = (〈1, ν+ + ν−〉, A(ν−, ν+, ~z, w)) .

Assume βj = (νj−, ν
j
+, ~z

j , wj) is a sequence in D for which Â(βj) converges to

s ∈ Rm+2 as j → ∞. We will show that there exists β ∈ D such that Â(β) = s.

Since (Â(βj))j is a convergent sequence in Rm+2 it is bounded and therefore both

the total variation of the νj± and the wj which are the first and last components

of the map Â are bounded. By the Theorem of Banach-Alaoglu we know that
balls in C(K)∗ are compact in the weak ∗ topology and therefore conclude that the
points βj lie in a compact subset of the closed cone D ⊆ E. As a result there is

a subsequence (βjn)n converging to a point β ∈ D. Since Â is a continuous linear

map we conclude that Â(β) = s as claimed.
�

Remark 4.4. If we think of a signed measure as a linear operator L ∈ V ∗ in the ellip-
soid E defined by ‖(L(φi)− yi)i=1...m‖2 ≤ δ then the quantity −‖~a‖2δ +

∑m
i=1 aiyi

equals infL∈E L(P ) where P :=
∑
aiφi and the optimization problem above can be

thought of as solving

sup
P :‖P‖∞≤1,P∈V

(
inf
L∈E

L(P )

)
This suggests a methodology for recovering an optimizer measure, given an optimal
solution (~a∗, α∗) of (3), namely:

(1) Define P ∗ :=
∑
a∗iφi and find an operator L∗ which is a minimizer of the

second-order cone optimization problem infL∈E L(P ∗).
(2) The values L∗(φi) are the moments of a measure which we can try to recover

via exact superresolution as in the previous section. The moments of this
measure are contained in E and L∗(P ∗) = α∗ so the measure has total
variation α∗ and is therefore a minimizer of (2).

Next we prove Theorem 1.5 which gives a semidefinite programming hierarchy
for solving (3) on explicitly bounded semialgebraic sets.

Proof of Theorem 1.5. (1) A polynomial h is a sum-of-squares of polynomials of
degree at most e iff there exists a PSD matrix A such that h = ~mtA~m where ~m is
the vector of monomials of degree at most e. It follows that Qs(g) is an SDR set
(a linear projection of a spectrahedron) for any s > 0. We conclude that the set{

(~a, b) : 1− 〈~a, ~φ〉, 1 + 〈~a, ~φ〉 ∈ Qs(g), ‖~a‖2 ≤ b
}

is also SDR since it is an intersection of two affine slices of SDR sets and a second-
order cone constraint. Since the function 〈~a, y〉 − bδ is linear on (~a, b) we conclude
that αs is the optimal value of a semidefinite programming problem as claimed.

(2) Suppose that (~a∗, b∗) is an optimal solution of (3). For ε > 0 let ~a′ := (1−ε)~a∗
and b′ := (1−ε)b. It is immediate that 1−〈~a′, ~φ〉 > 0 and 1+〈~a′, ~φ〉 > 0. Since K is
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explicitly bounded Putinar’s Theorem [P] implies that there exists an integer e > 0

such that 1 − 〈~a′, ~φ〉, 1 + 〈~a′, ~φ〉 ∈ Qe(g) and therefore αs is at least the optimal
value at (~a′, b), that is (1 − ε)α. We conclude that (1 − ε)α ≤ αe ≤ α proving the
claim since ε > 0 was arbitrary.

�

We are now in a position to prove the summarization Theorem 1.7.

Proof of Theorem 1.7. Suppose ∆ is a (δ, k) summary of µ and let X := supp(∆)
Since the moments depend continuously on the location of the points we can assume,
by slightly perturbing the support of ∆, if necessary, that X is a generic set of
points. If we define yi :=

∫
K
φidµ then yi =

∫
K
φid∆ + εi with ‖(εi)i‖2 ≤ δ. Since

d ≥ max(2g(X), i(X)) the claim follows from Theorem 1.3. �

5. Numerical Experiments

5.1. Exact Recovery. In this section we use the SDP procedure outlined in Sec-
tion 3.1 to recover discrete measures in K := [−1, 1]n, for n = 1, 2, 4 with V = V≤d.
The goal is to record the behavior of the algorithm as d and k vary for measures
supported on generic points. For each pair (k, d) we generate 100 uniform dis-

crete measures ∆j =
∑k
i=1

1
k δxji

with support Sj := {xj1, ..., x
j
k} in [−1, 1]n chosen

uniformly at random. For each j we compute the moments with respect to the
standard monomial basis of V≤d. To quantify the quality of the recovery we evalu-

ate the function q := H∗ at the points xji and report the proportion of points where
this quantity is very close to zero. Figure 1 reports the average of these proportions
over the 100 simulations. Figure 2 shows the function H∗ for degrees d = 2, 3, 4
where ∆ is a counting measure supported at four points in [−1, 1]. Figure 3 shows
the heatmap of the function log(H∗), for degrees d = 1, 2, 4, 6 where ∆ is a count-
ing measure supported in four points on K = [0, 1] × [0, 1]. As expected, location
accuracy increases with degree.
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(a) Recovery in dimension 1 (b) Recovery in dimension 2

(c) Recovery in dimension 4

Figure 1

(a) d=2 (b) d=3 (c) d=4

Figure 2. Polynomial H∗ associated to the counting measure on
4 points for different values of degree d via the recovery procedure.
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(a) d=1 (b) d=2

(c) d=4 (d) d=6

Figure 3. logarithm of H∗ when µ is a counting measure sup-
ported in four points and different values of the degree d.

5.2. Approximate Recovery. We let µ be the counting measure supported on
the five red points of Figures 4 and 5 (in dimensions one and two respectively).
Noisy measurements y′j =

∫
Φjdµ + εi are generated, where εi is a sample with

distribution N(0, ε) and {Φ1, ...,Φm} is the ortonormalization of the monomial basis
of V≤d with respect to the inner product given by the Lebesgue measure in [−1, 1]
and [0, 1]2 for d = 11 and d = 6, respectively in dimension 1 and 2. We choose
δ = ‖(εi)i‖2 and use the hierarchy defined in 1.5 with e = d.

5.3. Measure summarization. Applying Theorem 1.7 to the Lebesgue measure
on the interval [−1, 1] with V = V≤d, we obtain a very good approximation of
the d − th Gauss-Legendre nodes as local minima of the optimal polynomial H∗.
This is illustrated in Figure 6. The vertical lines correspond to the location of the
Gauss-Legendre nodes.
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(a) ε = 10−1 (b) ε = 10−3 (c) ε = 10−5

Figure 4. Logarithms of optimal polynomials H∗ with d = 11 for
noisy measurements and varying ε.

(a) ε = 10−3 (b) ε = 10−5 (c) ε = 10−7

Figure 5. Logarithms of optimal polynomials H∗ with d = 6 for
noisy measurements and varying ε.

(a) d = 2 (b) d = 6

(c) d = 10

Figure 6. Summarization of the uniform measure in [−1, 1]
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(a) Density w1(x) (b) Density w2(x)

Figure 7

Similarly we use Theorem 1.7 to obtain discrete approximations to the measures
in [0, 1] given by the densities w1(x) :=

√
1− x2 and w2(x) := 1√

1−x2
. The results

are shown in Figure 7. The recovered measures turn out to be supported on a set
very close to the roots of Chebyshev polynomials (marked in red) of degree d, which
are known to lead to the best interpolation formulas [K, Section 6.1].

Finally, in Figure 8 we apply Theorem 1.7 to the Lebesgue measure over the
square [−1, 1]2 with V = V≤d for d = 3, 4, 5. Note that when d = 3, 5 the obtained
summary is not the product measure of the one-dimensional summaries since its
support contains (0, 0) (compare with Figure 6). When d = 4 the algorithm finds
an H∗ with infinitely many real zeroes and is therefore unable to locate the support
of a discrete summary. It would be interesting to find criteria which guarantee that
problem (4) has discrete minimizers.

All computations in this section were made with the Julia programming lan-
guage [BJEKS] using the specialized solver [MA] and the JuMP modeling lan-
guage [IDaJHaML]. The code used to generate the examples in this section is
freely available at https://github.com/hernan1992garcia/super_resolution_

recovery.

https://github.com/hernan1992garcia/super_resolution_recovery
https://github.com/hernan1992garcia/super_resolution_recovery
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(a) Nodes for d = 3. (b) Nodes for d = 4.

(c) Nodes for d = 5.

Figure 8
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