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Different Approaches to 
Community Detection



What constitutes a 
community?
1. Balanced partition with min-cut.
2. Clusters (maximize density within)
3. Connectivity profile classes (SBM)
4. Groups where flows stay very long time 

(“units” for network dynamics)



Networks with communities: Dolphins
● Undirected social network of frequent associations between 62 dolphins in a 

community living off Doubtful Sound, New Zealand. D. Lusseau, K. Schneider, O. J. 
Boisseau, P. Haase, E. Slooten, and S. M. Dawson, Behavioral Ecology and Sociobiology 54, 396-405 (2003). 



Networks with communities: Karate
● Social network of friendships between 34 members of a karate club at a US 

university in the 1970s. W. W. Zachary, An information flow model for conflict and fission in small 
groups, Journal of Anthropological Research 33, 452-473 (1977).



Networks with communities: Adjective-Nouns
● Adjacency network of common adjectives and nouns in the novel David 

Copperfield by Charles Dickens. M. E. J. Newman, Phys. Rev. E 74, 036104 (2006).



Networks with communities: Political Blogs
● recent books on US politics, with edges connecting pairs of books that are 

frequently purchased by the same customers of the on-line bookseller 
Amazon.com.  compiled by V. Krebs (unpublished)



In each example the definition 
of communities is different...

Is there a “ground truth”?



Quick recap of important concepts
● Adjacency Matrix: 

● Laplacian Matrix:

● Spectrum of  a Matrix: eigenvalues and 

eigenvectors, important because of 

stationary distribution and convergence 

to it.

● Random Walk: Stochastic process, in 

this case jumping from nodes to 

neighbors with homogeneous transition.

● Stationary Distribution: All random walks 
that are irreducible and aperiodic have a 
stationary distribution such that:

● Perron-Frobenius: The largest eigenvalue is 
always real and corresponds to the stationary 
distribution. It has multiplicity 1. 

● Power Method: 

● High degree hub: Fancy name for the 
neighborhood of a high degree node.

● Erdos-Renyi random graph: Simplest 
random graph. N nodes, and I connect each 
pair by flipping a coin.



● Ground-truth is discretional or at least dependent on the mathematical 
formulation for communities.

● However, all solutions are highly related.1 

1 “Spectral methods for network community detection and graph partitioning”, M.E.J. Newman

Max. ModularityStatistical Inference Longest mixingMin. cut



Min-cut approach



Graph Partition
We want to pick the partition 

that minimizes the edges that are 
“cut”...

● Long tradition in computer 
science.

● AplicatiDesign of Hardware and 
Distributed Computation.

● Can be solved exactly in 
polynomial time, unfortunately 
the complexity is:

● Usually we want to approximate



Minimizing Ratio Cut
● The ratio cut for a given partition of the nodes, counts the edges that go across 

communities, penalizing small communities.

● Where the cut is defined as the number of edges across:



When we relax the second problem, it’s a convex problem and the 
solution is related to the second (smallest) eigenvector of L. How?



Modularity approach



Considering Internal Density...
“Despite its evident success in the graph partitioning arena, spectral 
partitioning is a poor approach for detecting natural community structure in 
real-world networks [...]. The issue is with the condition that the sizes of 
the groups into which the network is divided be fixed. This condition is 
neither appropriate nor realistic for community detection problems” - M. E. J. 
Newman, Finding community structure in networks using the eigenvectors of matrices, 2006

● We want group sizes that are “free”.
● Cut sizes are simply not the right thing to optimize because they don’t 

accurately reflect our intuitive concept of network communities.



#Edges Within -     (#Edges within)
● Minimizing the cut size doesn’t really look into the internal density of the 

partition. Maximize that instead!
● Modularity and its variants can be seen as a trade-off between cut-based 

measures and entropy.

● Modularity is the fraction of the edges that fall within the given groups minus 
the expected fraction if edges were distributed at random (with fixed degree 
distribution as in the configuration model).



Modularity Matrix and Spectral Methods

It can easily be shown that all rows and columns of B add up to zero. So the vector 1 
will be an eigenvector.

This would be easily maximized with a 
vector s proportional to the first 
eigenvector...But we’re constrained.



Modularity Matrix and Spectral Methods

This approximation is the “most parallel” to the first eigenvector of B.

1 “Finding community structure in networks using the 
eigenvectors of matrices”, M.E.J. Newman



Random graphs with 
communities
Establishing a “ground truth”



SBM
Stochastic Block Model

● We construct k Erdós-Renyi graphs 
with parameters  

● We connect them with independent 
coin flips of probability 

● Assuming this is the model, we can 
find the MAP values of the 
parameters (statistical inference).

● Spectral methods are cheaper and 
make sense even when the true 
model isn’t an SBM.



Statistical Inference for SBM
● Allows for a solid theoretical framework (For example proving phase 

transition)
● Provably optimal (attains detection and recovery to the theoretical limit)

Basic Idea
Estimate MAP parameters, like fitting a line through points. 
(Good heuristics)

Problem
If the true model isn’t SBM then it’s like fitting a line to a 
quadratic function, it can never be a good fit. SBM has no 
triangles and Poisson degree distribution (unrealistic).

Solution? Degree corrected block model or Configuration+Transitivity 
model >> Hard problem



After relaxation, the MAP 
problem is equivalent to 
modularity maximization 
which are solved with 
spectral methods



Phase transition and spectral method gap
● Using the statistical inference framework it was proven that detectability of 

communities isn’t possible when:

● Below that threshold the SBM is indistinguishable from an Erdós-Renyi graph 
with parameter the average degree.

● This was conjectured to happen due to the second eigenvalue being lost in the 
bulk.





Spectral Method Gap
● For a decade or so, spectral methods didn’t get to the theoretical limit when statistical 

inference methods (like Belief Propagation) did. (SPARSE CASE)
● Spectral algorithms, based on the adjacency matrix, random walk matrix, and graph 

Laplacian, were assumed to be inferior.
● (Krzakala, Mossel, 2013) showed a “Spectral Redemption”



Flow Dynamics approach



Random Walk
● We can associate an adjacency matrix to a simple random walk on the nodes.
● This random walk has a stationary distribution 

● Any probability measure on the nodes will converge to it. Such initial 
probability can be seen as an excess of energy in each node (when subtracting 
the stationary distribution).

● Which “shock” to the equilibrium takes longer to “mix”?



Conservative Flow ~ Community structure

● To get the slowest mode of convergence, we want to put hot particles and cold particles 
“away” from each other. Make use of Bottlenecks.

● It makes sense that the second eigenvector of the transition matrix, gives the 
perturbation that vanishes at the slowest rate. 

● In a SBM model this is precisely what communities are.



Conservative Flow approach
● An intuitive approach is to row-normalize the Adjacency matrix and look at the 

second eigenvector for the community structure. 
● Other options include the normalized Laplacian Matrix and the symmetric 

normalized Laplacian Matrix. They all fail:



Spectral Redemption
● Krzakala et al. (2013) argue that the spectrum of these sparse matrices is very 

influenced by the high degree nodes. Other eigenvalues “swallow” the important 
one

● From a flow perspective; high degree nodes and their neighborhoods conserve 
the flow for a long time, but they might not be totally included in one 
community. 

● The second eigenvector gets focalized around high degree nodes.





Non-Backtracking Operator

Problem
Spectral Methods fail, because high degree “hubs” trap the flow 
for a long time, and could be uncorrelated to communities. 

Idea
Force the random walk over the nodes to not stay in the high 
degree hubs. Backtracking is not allowed!

Operator This non-markovian dynamics require an operator that 
encodes the past. The non-backtracking operator on directed 
edges.



The Non-Backtracking Matrix
● We represent this walk with a walk on the edges.
● First, we duplicate each undirected edge with two opposing directed edges.
● Then we create a matrix B on those 2m directed edges, with values 1 and 0 

given by:

● This matrix’ spectrum isn’t influenced that much by high degree nodes. I.e. the 
bulk doesn’t swallow the second eigenvalue that easily.

● From a flow perspective, we push the excess energy away from high degree 
hubs forcing it to travel the network.



Clustering using the Non-Backtracking Operator
1. Compute the Non-Backtracking matrix.
2. Get the second eigenvector (of dimension 2m)
3. Average the entries corresponding to edges that point to node i. 

That’s the score for node i.
4. Classify the nodes according to the sign of their score. 

Problem
Tree-like structures can only be “walked” with backtracking. 
The effect is that their nodes have 0 value in the eigenvector 
and are incorrectly classified. This is an issue with very sparse 
graphs.



Detection in networks 
with Triangles



Transitivity
If Aij = 1 and Ajk=1 , then 
Aik=1 with high probability

● What explains it?
● How can we generate 

random networks with it?
● SBM doesn’t have it.
● Non-backtracking 

operator doesn’t use it.
● Can we?



Main idea: Modify NBT operator
● If we know that within communities there are more triangles than across, then we can 

use that information to try and stay within communities as long as possible.
● If I’m biased towards the nodes that form a triangle with my current node and the 

previous one, then with high likelihood I’ll stay in the community of those two nodes.



Spectrum of the BTT algorithm



Future Work

● Node dependent Alpha
● Analysis of the third spectral moment.
● Connection to the higher-order cut problem.
● Transitivity detectability threshold.



Thank you


