Desarrollo de una metodología de identificación automática de diagnósticos críticos a nivel cerebral en el departamento de Radiología de la Fundación Valle del Lili

Seminario de Matemáticas Aplicadas – Quantil Enero 28, 2021

Natalia Santamaría Macías, Ingeniera Biomédica nataliasantamaria9@gmail.com

Diagnósticos críticos cerebrales

En Radiología, un diagnóstico crítico es un hallazgo que se detecta en un estudio y que tiene **importancia decisiva o crucial**, pudiendo influir en el diagnóstico y tratamiento de un paciente, por lo que es necesario su reporte inmediato.

Según el National Health Service de Inglaterra, la demanda en los servicios de Radiología ha tenido un crecimiento de más del 3.6% anual.

Entre los exámenes diagnósticos se incluyen: radiografías, ecografías, tomografías computarizadas, resonancias magnéticas, PET-CT y SPECT.

En Estados Unidos, la estadística del 2016 mostró:

- 141 TAC /1000 pacientes
- 347 ecografías/1000 pacientes
- 64 RMN / 1000 pacientes
- 22 estudios de medicina nuclear / 1000 pacientes

Resonancia Magnética

A nivel cerebral, la **resonancia magnética** es la **técnica más sensible**. Esta es una técnica que utiliza campos magnéticos fuertes produciendo una imagen tridimensional de la anatomía cerebral. Larmor equation:

(1-1)

Adquisición de datos

Secuencias de Resonancia Magnética

- T1-Weighted Imaging (T1WI)
- T2-Weighted Imaging (T2WI)
- Fluid Attenuated Inversion Recovery (FLAIR)
- Apparent Diffusion Coefficients (ADC)
- TRACE

Preprocesamiento de las imágenes

Imagen MR después de la extracción de cráneo y alineación

Extracción de Características

Núcleo caudado
Cerebelo
Lóbulo Frontal
Insula
Lóbulo Occipital
Lóbulo Parietal
Putamen
Lóbulo Temporal
Tálamo

Atlas MNI 152

Regiones del atlas en un cerebro de un paciente

Extracción de Características

Atlas MNI 152

Regiones del atlas en un cerebro de un paciente

Extracción de Características

Atlas MNI 152

Regiones del atlas en un cerebro de un paciente

Extracción de Características

38,852 muestras de los estudios de resonancia magnética: 32,466 (83.6%) muestras de tejido cerebral sano, y
6,386 (16.4%) muestras de tejido cerebral con una patología.

No hay grupos que sean fácilmente discriminados entre sí.

No es diferenciable por medio de modelos lineales.

Clasificadores

KNN y Naive Bayes Independiente e Identicamente Distribuido (i.i.d)

Regresión Logística modela la probabilidad de resultados en función de las características individuales.

Árboles de decisión, la estructura de árbol es libre de adaptarse a los datos que se utilizan.

En Random Forest, se obtiene un modelo más robusto.

Entrenamiento y Validación

Metodología Hold Out

Se conservó la distribución de las clases

Validación Cruzada para el entrenamiento de los datos 70% Entrenamiento /30% Validación

83.6% de cerebros sanos y16.4% con algunaanormalidad.

5 Subconjuntos

Resultados

• Matriz de Confusión

• Métricas (Exactitud, Sensibilidad, Especificidad, Coeficiente Kappa y Medida F)

• Comparación de modelos acorde a una línea base

Se asumió que las 38,852 muestras de los estudios de resonancia magnética eran sanas.

Línas Dasa	Exactitud	Sensibilidad	Especificidad	Medida F	Карра
Linea Base	0.8360	1	0	0.91	0

KNN

Exactitud	Sensibilidad	Especificidad	Карра	Medida F	Error Entren.
0.9743	0.9858	0.9159	0.9061	0.9847	0.0295 ± 0.0022

Regresión Logística

	Normal	Anormal
Normal	0.9681	0.0319
Anormal	0.4475	0.5525

Exactitud	Sensibilidad	Es	pecificida	d	Kappa	Medida F	Error Entren.
0.8998	0.9681		0.5525) (0.5879	0.9417	0.0998 ± 0.0030
	•	-					

Modelo final se obtiene con un CP = 0,00037 correspondiente a la partición 166.

	Normal	Anormal
Normal	0.9792	0.0208
Anormal	0.1739	0.8261

\mathbf{c}	n
L	ν

Exactitud	Sensibilidad	Especificidad	Карра	Medida F	
0.9540	0.9792	0.8261	0.8278	0.9727	

Random Forest

Modelo	Dataset	Exactitud	Карра	Medida F
nTree 10	Train	0.9980	0.9928	0.9988
nTree 10	Test	0.9759	0.9108	0.9856
nTree 50	Train	0.9999	0.9987	0.9999
nTree 50	Test	0.9784	0.9202	0.9871
nTree 500	Train	1	1	1
nTree 500	Test	0.9791	0.9225	0.9875
nTree 1500	Train	1	1	1
nTree 1500	Test	0.9793	0.9235	0.9877

Random Forest

	Normal	Anormal
Normal	0.9914	0.0086
Anormal	0.0836	0.9164

Error OOB = 0.02209721

Exactitud	Sensibilidad	Especificidad	Карра	Medida F
0.9791	0.9914	0.9164	0.9225	0.9875

Comparación Modelos

Líneo Dese	Exactitud	Sensibilidad	Especificidad	Карра	Medida F
Linea Base	0.8360	1	0	0	0.91

En la siguiente tabla se presentan las métricas obtenidas con los diferentes modelos que se probaron.

Modelo	Exactitud	Sensibilidad	Especificidad	Карра	Medida F
KNN	0.9743	0.9858	0.9159	0.9061	0.9847
Naive Bayes	1	1	1	1	1
Regresión Logística	0.8998	0.9681	0.5525	0.5879	0.9417
Árboles de Decisión	0.9540	0.9792	0.8261	0.8278	0.9727
Random Forest	0.9791	0.9914	0.9164	0.9225	0.9875

Comparación Modelos

En la siguiente tabla se presentan las métricas obtenidas con los diferentes modelos que se probaron <u>entrenando con las variables predictoras **T1, T2 y FLAIR**.</u>

Modelo	Exactitud	Sensibilidad	Especificidad	Карра	Medida F
KNN	0.9538	0.9761	0.8407	0.8293	0.9725
Naive Bayes	0.9058	0.9592	0.6339	0.6336	0.9445
Regresión Logística	0.8993	0.9668	0.5556	0.5875	0.9413
Árboles de Decisión	0.9344	0.9775	0.7154	0.7438	0.9614
Random Forest	0.9545	0.9776	0.8386	0.8312	0.9729

Línea Base	Exactitud	Sensibilidad	Especificidad	Карра	Medida F
	0.8360	1	0	0	0.91

Comparación Modelos

En la siguiente tabla se presentan las métricas obtenidas con los diferentes modelos que se probaron <u>entrenando con las variables predictoras **FLAIR**.</u>

Modelo	Exactitud	Sensibilidad	Especificidad	Карра	Medida F
KNN	0.8914	0.9509	0.5885	0.5769	0.9360
Naive Bayes	0.895	0.9442	0.6444	0.6062	0.9376
Regresión Logística	0.8834	0.9681	0.4527	0.4978	0.9328
Árboles de Decisión	0.8927	0.9357	0.6742	0.6096	0.9358
Random Forest	0.8468	0.9075	0.5384	0.4443	0.9083

Línea Base	Exactitud	Sensibilidad	Especificidad	Карра	Medida F
	0.8360	1	0	0	0.91

Conclusiones

- Dados los resultados obtenidos en el presente trabajo, se podría plantear una **atención** especializada más oportuna y suponer una mejor evolución clínica del paciente.
- Las lesiones cerebrales son diferenciables de acuerdo con las intensidades de señal de imagen.
- Como trabajo futuro, sería interesante considerar la clasificación de las alertas de diagnósticos críticos al determinar qué patología se está detectando, esto por medio de algoritmos más robustos.