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Summary

 Criticality in Complex Systems

 Criticality in Human Social Systems

* Dynamics of social dilemmas and critical
behaviour: empirical, simulation and theoretical
analysis

e Conclusions



Criticality in Complex Systems

T<<T,

Ising model (applet) Cavagna et al., PNAS (2010)

(animations, top and bottom)
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Gelblum et al., Nat. Comm. (2015)
(YouTube video)


http://www.youtube.com/watch?v=jx4bP0DYfK0
http://mattbierbaum.github.io/ising.js/

Effects of criticality

* At a critical point, a system has long-range
correlations (classical thermodynamics).

* Close to a critical point, a system iIs able to
explore more possible configurations.

* A biological system near criticality maximizes
the fitness and shows resilience (Hidalgo et al.,
PNAS 2014).

e Could it be valid also for Human Social
Systems?



Why criticality?

How does a collective biological system reach a
critical configuration?

Several mechanisms have been proposed:

 Criticality stems from the optimal balance
between individuality and conformism (Gelblum
et al., Nat. Comm. 2015);

« Criticality origins from the mutual adaptation of
agents inferring their peers' behaviour (Hidalgo
et al., PNAS 2014).



Criticality in Human Social Systems

First experimental evidence of criticality when humans play
Prisoners' Dilemma: Realpe-Gomez, et al. (2017).

Mechanisms proposed:

« balancing individual and norm-based considerations (cf.
Gelblum, et al., 2015);,

 |learning from peers' behaviour (cf. Hidalgo et al., 2014).

Experimental setup analysed: Large-scale Prisoner's
Dilemma Game in Gracia-Lazaro et al., PNAS (2012)




Human and Social Dilemmas

Lattice Heterogeneous
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Main experimental observations

1. Lattices or networks do not support cooperation.

2. People display Moody Conditional Cooperation (MCC), i.e., when
deciding to cooperate individuals are responsive to the behavior of
others, but only if they have cooperated themselves.

3. People do not take into account the earnings of their neighbors.

4. Cooperation can be sustained in dynamic networks.

Garcia-Lazaro et al PNAS 2012; Sanchez JSTAT 2018



Humans and Social Dilemmas

In experiments (again PDG) conducted by Gruji€ et al.,
PloS One (2010), three kinds of players have been
identified:

absolute cooperators (~5%),
absolute defectors (~30%),

agents which respond to the cooperation they observe
In a reciprocal manner, the so-called Moody
Conditional Cooperators (MCC, ~65%).

The MCCs are the only players able to adapt their
behaviour to the actions of others and the social
norms ruling the environment.

The analysis of criticality in Realpe-Gomez et al. has
been based on a representative agent similar to MCCs



Some experimental results with 625 human subjects
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Towards a more realistic modeling of human behavior

Agents weight "utility" of selfish and prosocial behavior

AU;(t) = AL(t) + hAN;(t) NEUROECONOMICS
OF PROSOCIAL BEHAVIOR

Agents have decaying memory of performance.
Drive to cooperate given by:

D;(t+1) = (1 —«a)D;(t) + AU;(t)

Bounded rationality: agents make "mistakes".
Probability to cooperate given by

Carolyn Declerck

Z( + ) 1 4 e—ﬁDi (t+1) d Christophe Boone

Realpe-Gdmez et al. arXiv:1608.01291, to appear in Physical Review E



Towards a more realistic modeling of human behavior

Experimental values for (weak) Prisoner's Dilemma

Payoffs
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Individual drive ( Al = R—T and AlIp =S — P)

Ali(t) = (Al — Alp) — Z si(t)+Alp
JjEdIi

Normative drive

AN;(t) = we2si(t) — 1] —|—w0— Z si(t) +wrsi(t Z st
1681 jeaz

Realpe-Gdmez et al. arXiv:1608.01291, to appear in Physical Review E



Towards a more realistic modeling of human behavior

Selfishness

Agents base their decisions on self-regarding

considerations

Assumption Description Representation
Bounded rationality Agents do not always play the optimal strategy |5 in Eq. (1)
% Boliok Tensriiip ﬁ(gen‘cs learn from what could have potentially Eq. (2)
9 appened
< |Reinforcement learning Agents learn from what actually happened Eq. (2)
|27 Memory decay Agents give more relevance to recent events a in Eq. (2)

Alc, Alp, Egs. (3) and (4)

274 plock

Norm conformity:

- Self-consistency

- Social influence

- Moody conditional coop.

Agents base their decisions also on social norms
Agents are consistent with own beliefs and
self-ascribed norms

Norm compliance increases with the number of
compliant peers

Social influence is stronger if aligned with

self-consistency

h in Egs. (3) and (5)

wc in Eq. (5)
wo in Eq. (5)

wr in Eq. (5)

34 block

Slow adaptation

No network reciprocity

Adaptation happens over several individual
strategic choices
Interaction structure does not significantly

influence behavior

Egs. (9) and (10)

Eqgs. (11) and (12)

Realpe-Gdmez et al. arXiv:1608.01291, to appear in Physical Review E




Further empirically motivated simplifying assumptions

Absence of network reciprocity (mean field approximation)

Zjeai rj = K

Slow adaptation (adiabatic approximation)

« NTJOUAOISJ 7>>_L




Diagram of model assumptions

Bounded rationality (B):

// Mistakes, misinterpretations

Cumulative
reinforcement learning:

What actually happened
I

Decaying memory (c):
Recent events count more

Belief learning:
What could have happened

Self-consistency:
What | did (w)

.............................................

Self-regarding motivations |  weight h z
"""""""""""""""" “Empathy” (w,):

What others did

Individual drive: Relative | Normative drive

Adiabatic approximation:

Slow adaptation Mean field approximation:

Interaction topology neglected

. T Simplifying
Continuous time limit: assumptions
SianaRinhon System in stationary state:
MCC Linear approximation: Well described t_>y long term
Slow adaptation dynamics

Realpe-Gdmez et al. arXiv:1608.01291, to appear in Physical Review E



Single-representative agent model and long-term dynamics

Final deterministic (adiabatic approx.) single representative agent (mean
field approx.) dynamical equation given by:

x(t)l_a
z(t)1= + [1 — 2(t)] ~* e~ PAUL(®)]

rlt+1) =

where effective utility function in terms of effective parameters is given by:

AU[z] = aK 2* + (bK +2h)x — h

Long-term dynamics can be characterized by fixed points of the equation

rt+1)=z(t) ==
which yields

r= f(x) with f(x)= % + %tanh [A(z — 20)* + yo

Realpe-Gomez et al. arXiv:1608.01291, to appear in Physical Review E



Fixed points, phase transitions, and criticality

Fixed-point equation for magnetic systems Phase diagram (T=1/)
tanh(pJm)
f(m)=m
A i mO
crit T_
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Fixed points, phase transitions, and criticality

1

EWAN model's fixed points o
1 l = 0.4
f(x) — § + 5 tanh [A(ZU - xO)Q _I_ yO} 02

If w, = 0, magnetic-like system
m = tanh [B(Jegm + Heg)]
with
Jot = (hwo + Alc + 2h)/4a
Heg = (hwo + Alg)/4a

f(x)
f(x)
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Phase diagram and location of experimental human groups
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Moody conditional cooperation and EWAN model

Dynamical equation can be interpreted as:
z(t+1)=P(C,t+ 1|s,n,x,t)

If there is only one fixed point x , there is no dependency on the history,
i.e. on x, and at the stationary state (fixed point) we have
1

P(C]s,m) =
(Cls,n) 1+y%—a€_,3mf(s,n)

where y1 = (1 —x1) /21
When rationality parameter B is small, we can do a linear expansion:

P(Cls;m) =msn/ K +71;

Where slopes and intercepts are given by I(a) = : ’
L+y,
ms = K J(a)(as +b), T yl-o
&) = .
rs = I(a) + BJ(a) [h(2s — 1)] (1+ y}_“)Q

Realpe-Gomez et al. arXiv:1608.01291, to appear in Physical Review E



Bayesian parameter inference from experimental data

Joint distribution of "true" deterministic trajectory and noisy observed one:

Px(0 : T),Xobs(1 : T)|0] = Po[z HPOI)S Tobs (t)|2(t)] Payn[z(t)|2(t — 1)|O].

where
Payn[z(t)|z(t — 1)\()] O[x(¢) - x(¢ - 1)] (Dirac delta function)

Pobs[Tobs (t)|2(t)] = N[zobs(t); z(t), o]
Parameter inference: Compute posterior
PoO | x50l ¢ T')] ¢ Plesne(l § T O P [9]:
where © = O = (mg,mp,rc,TD).
Prior was chosen from values allowed by experimental error, i.e.
Porior[©]. = Uniform in [O* — (60*,0* + (60*].

¢ = 1.28 yields 90% credible interval. { = 1.96 yields 97.5% credible interval.



Average cooperation

Probability of cooperation

Reproducing experimental results with EWAN model

Experiments with 625 humans

Heterogeneous network b Square lattice
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Impact of EWAN model parameters

We can also describe the MCC linear trend in terms of mean intercept r
and gap G between intercepts

1
P = §(r(~ +rp) = I(a),

G =rc —rp = 2BhwcJ(a),

as well as the difference and ratio between slopes

So,

mc —mp = faKJ(«a),
mc Ba+Bb

mp Bb

If "mood parameter" W = 0, then gap vanishes, G = 0. Not observed.
If "MCC parameter™" w, = 0, so a =0, then slopes equal, m. = mg. Not
observed. Moreover, w, generates non-equilibrium phenomena.

If "peer pressure” parameter w_ = 0, slope m always negative.
Observed empirically, yet w_ was required for good fit.




Final remarks

The network structure has much less influence than the mere
number of neighbours: this is a typical feature of critical
phenomena (universality classes).

Social norm driven behavior (as MCCs' behaviour) poises the
system to a critical point.

Further studies are still needed (of course!): in particular, new
laboratory experiments designed to test directly for criticality,
as well as the analysis of finite size effects, are necessary to
reach more solid conclusions.

References: Vilone, Andrighetto, Realpe-Gomez, Studies in
Computational Intelligence, 689 (2018);
Vilone, Andrighetto, Realpe-Gomez, in preparation.
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