Complex networks for Foot-and-Mouth Disease (FMD) vulnerability

Authors: Jeisson Prieto & Francisco Gómez

COmputational Modeling of BIOlogical Systems (COMBIOS) Universidad Nacional de Colombia, Bogotá D.C., Colombia

May 2019

Outline

Outline

Foot-and-Mouth Disease (FMD)

Risk factors

Foot-and-Mouth Disease (FMD) Risk factors

- Super-spreaders for FMD
- Cattle network
- Graph Characterization

- Contiguity Network Construction
- Vulnerability analysis

Risk factors

Academic Research

April 22-25, 2019 Ouarzazate-Morocco

Pre-COSALFA 46

International Seminar "On the threshold of Eradication of Footand-Mouth Disease: Pending Tasks"

Definition ¹

Risk factors

• Highly contagious viral disease.

Foot-and-Mouth Disease (FMD)

- Affects cattle, swine, sheep, goats and other cloven-hoofed ruminants.
- Severely affect the production and international trade of livestock and animal products.
- The morbidity rate may approach $100\,\%$ in susceptible cattle populations.

¹OIE. (2018). Foot & Mouth disease (FMD).

Risk factors

The importance of FMD

- FMD losses approximated USD \$2 billion ².
- UK outbreak cost GBP \$6 billion ³.
- FEDEGAN In 2016 there was 26'413.227 cattle ⁴.
- ICA 2018 outbreak cost USD \$53 million ⁵.

 $^2 {\rm Yu}$ e/ al. (1997). A risk-assessment model for foot and mouth disease (fmd) virus introduction through deboned beef importation.

³Flood (2016). Foot-and-mouth disease epidemiology in relation to the physical, social and demographic farming landscape.

⁴FEDEGAN - Inventario ganadero. https://www.fedegan.org.co/estadisticas/inventario-ganadero.

⁵Pre-COSALFA 46 (2019). FMD Outbreak 2018 and control.

Foot-and-Mouth Disease (FMD)

Vulnerability by cattle movement Vulnerability by contiguity Conclusions

Risk factors

Risk factors

Meta-analysis⁶

- Bovine herd
- Animal mobilization
- Productive process
- Health aspects
- Biophysical space
- Biophysical-environmental environment

⁶Morales *et* al. (2019). Metodología para el análisis espacial por vulnerabilidad y riesgo de la fiebre aftosa.

Foot-and-Mouth Disease (FMD)

Vulnerability by cattle movement Vulnerability by contiguity Conclusions

Risk factors

Case study

Cesar Region

- Animal mobilization
- Biophysical space

Outline

Foot-and-Mouth Disease (FMD) Vulnerability by cattle movement Vulnerability by contiguity Conclusions Super-spreaders for FMD Cattle network Graph Characterization Results

Justification

- **Cattle movement** is a principal cause of the initial dis semination of foot-and-mouth disease (FMD) ⁷.
- Therefore, transportation of these animals may represent an important risk for FMD propagation ^{7 8}.
- These movements records can be used to construct a complex network which structure can critically impact the transmission dynamic of many infectious diseases ⁸.

Understanding the structure of this transport network is of the utmost importance for preventing and controlling future epidemic outbreaks.

 $^{^7{\}rm Gibbens}$ et al. (2001). Descriptive epidemiology of the 2001 foot- and-mouth disease epidemic in Great Britain: the first five months.

 $^{^{8}{\}rm Kiss}$ et al. (2006). The network of sheep move- ments within Great Britain: network properties and their implications for infectious disease spread.

А

B Eigenvector

Foot-and-Mouth Disease (FMD) Vulnerability by cattle movement Vulnerability by contiguity Conclusions Super-spreaders for FMD Cattle network Graph Characterization Results

Super-spreaders for FMD

1. Cattle movement

3. Graph characterization

2. Network construction

4. Super-Spreader of Disease

Between

Super-spreaders for FMD Cattle network Graph Characterization Results

Movement definition ⁹

⁹SIGMA - Sistema de información para Guías de Movilización Animal. https://sigma.ica.gov.co/.

Super-spreaders for FMD Cattle network Graph Characterization Results

Movement characterization ¹⁰

 10 Nöremark *et al.* (2009). Spatial and temporal investigations of reported movements, births and deaths of cattle and pigs in Sweden.

Super-spreaders for FMD Cattle network Graph Characterization Results

Graph Characterization

Degree

Direct contacts per holding

Betweenness

Frequency with which a cattle holding is in the shortest path between pairs of nodes in the network

Super-spreaders for FMD Cattle network Graph Characterization Results

Super-spreaders by mixing rankings

Borda's count aggregation method ¹¹

¹¹Madotto & Liu (2016). Super-Spreader Identification Using Meta-Centrality.

Super-spreaders for FMD Cattle network Graph Characterization Results

Network...

Super-spreaders for FMD Cattle network Graph Characterization Results

Undirected Degree Centrality

Super-spreaders for FMD Cattle network Graph Characterization Results

Undirected Betweenness Centrality

Super-spreaders for FMD Cattle network Graph Characterization Results

Super Spreader Ranking ¹²

 $^{^{12}}$ Gómez *et* al. (2019). Identification of Super-Spreaders of Foot-and-Mouth Disease in the cattle transportation network: The 2018 outbreak case in Cesar (Colombia).

Super-spreaders for FMD Cattle network Graph Characterization Results

Conclusion

Contiguity Network Construction Vulnerability analysis Results

Outline

Justification

- Strategies for the prevention and control of (FMD) are based on vulnerability levels at farm level ¹³.
- Risk factors **NOT** associated with animal movement ^{14 3}:
 - People movement between farms.
 - Permeability of physical barriers.
 - Machinery movement (Fomites).

The design of epidemiological strategies for the management of FMD is based on the quantification of these factors.

¹³Martínez-López *et al.* (2014). A multi-analysis approach for space-time and economic evaluation of risks related with livestock diseases: The example of FMD in Peru.

 $^{^{14}}$ Jori *et al.* (2009). A qualitative risk assessment of factors contributing to foot and mouth disease outbreaks in cattle along the western boundary of the Kruger National Park.

 $^{^3{\}rm Flood}$ (2016). Foot-and-mouth disease epidemiology in relation to the physical, social and demographic farming landscape.

Contiguity Network Construction Vulnerability analysis Results

Vulnerability index for FMD

1. Farms location

3. Community detection

2. Network construction

4. Vulnerability index

Contiguity Network Construction Vulnerability analysis Results

Cesar information ⁶

⁶Morales *et* al. (2019). Metodología para el análisis espacial por vulnerabilidad y riesgo de la fiebre aftosa.

Contiguity Network Construction Vulnerability analysis Results

Contiguity Network

Geodesic distance ¹⁵

Create connections ³

	Α	в	С	D	\mathbf{E}
Α	-	Yes	No	No	No
в		-	No	Yes	No
\mathbf{C}			-	Yes	No
D				-	No
E					-

 $^{15}\mathrm{Hilbert}$ & Cohn-Vossen (1999). Geometry and the Imagination.

 $^3{\rm Flood}$ (2016). Foot-and-mouth disease epidemiology in relation to the physical, social and demographic farming landscape.

Contiguity Network Construction Vulnerability analysis Results

Community detection

Complex networks to characterize the farms through community detection 16 .

¹⁶Radicchi et al. (2004). Defining and identifying communities in networks.

Contiguity Network Construction Vulnerability analysis Results

Vulnerability index

 $^{^{6}}$ Morales et al. (2019). Metodología para el análisis espacial por vulnerabilidad y riesgo de la fiebre aftosa.

¹⁷Prieto et al. (2019). Contigüidad de predios como factor de Riesgo: Análisis de Redes aplicado a esquemas de bioseguridad para Fiebre Aftosa.

Contiguity Network Construction Vulnerability analysis Results

Ranges: Farm density δ

occur

Contiguity Network Construction Vulnerability analysis Results

Ranges: Farm connectivity χ

Event happens in minority cases

Event happens in most cases

Event is likely to

occur

Contiguity Network Construction Vulnerability analysis Results

Spatial analysis: Voronoi diagram

Farm polygons

Community polygons

Farm density δ

Farm connectivity χ

Vulnerability by contiguity

Contiguity Network Construction Vulnerability analysis Results

Probability

Farm connectivity χ

Outline

Conclusions

- The strategies are able to properly target **highly susceptible** (Vulnerable) areas of infection and propagation of the virus.
- (1) A strategy to characterize **FMD super-spreaders** nodes in the cattle transportation network is proposed.
- (2) **Spatial analysis strategy** to characterize vulnerability (bio-security) and / or risk (bio-containment) is proposed.
- This information can be used to inform existing national FMD control program and suggest new guidelines to prevent FMD outbreaks in the country.
- The flexibility in the visualization, allows to implement the strategies in different spatial scales (farm, town), for **decision making** by the health authority and / or territorial planners.

Questions?