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A Fruitful Decade for Matching Markets

I Matching market: Allocation of resources without monetary
transfers.

I In the last decade there has been a lot of activity and excitement
among economists working on matching markets.

I Theory, pioneered by Gale and Shapley (1962), matured to a
point where matching theorists could make policy suggestions in
key areas including education and health care.

I Until early 2000s the main practical application of matching
theory was entry level labor markets such as the U.S.
hospital-intern market.

I This trend has recently changed as matching theory found new
applications in (often large scale) resource allocation problems
of social importance.



A Fruitful Decade for Matching Markets

I Recently economists have been using economics to design
institutions successfully, such as (1) labor markets where
workers and firms are matched, (2) organizing organ donation
network, and (3) student placement in schools.
I Reforms of student assignment mechanisms in major school

districts such as Boston, New York City, Chicago, Denver, New
Orleans, and throughout England by all local authorities.

I Establishment of regional and national centralized kidney
exchange programs in the U.S., U.K., Sweden, and Turkey.

I In a Congress testimony, Dr. Myron Gutmann (Assistant Director,
SBE, NSF) emphasized that “research on matching markets has
resulted in measurable gains for the U.S. taxpayer”.



Labor Markets: The case of American hospital-intern
markets.

I Medical students in many countries work as residents (interns) at
hospitals.

I In the U.S. more than 20,000 medical students and 4,000
hospitals are matched through a clearinghouse, called NRMP
(National Resident Matching Program).

I Doctors and hospitals submit preference rankings to the
clearinghouse, and the clearinghouse uses a specified rule to
decide who works where.

I Some markets succeeded while others failed. What is a “good
way” to match doctors and hospitals?



Kidney Exchange

I There are close to 97,000 patients on the waiting list for cadaver
kidneys in the U.S. as of June 2017.

I A staggering 5,000 people die every year waiting for a kidney
transplant and another 5,000 are taken off the list because they
are no longer healthy enough to receive a transplant.

I Most transplanted kidneys are from cadavers, but there are also
substantial numbers of transplants from live donors.
I 2-way exchange.
I Cycles and chains.
I 2 and 3 way exchanges and non-directed (altruistic) donor chains.

I How are an efficient and incentive-compatible system of
exchanges organized, and what are its welfare implications?



School Choice

I In many countries, children were automatically sent to a school
in their neighborhoods.

I Recently, more and more cities in the United States and in other
countries employ school choice programs: school authorities
take into account preferences of children and their parents.

I Because school seats are limited (for popular schools), school
districts should decide who is admitted.

I How should school districts decide placements of students in
schools?



Matching Markets

Recipe for success: Discovery of important practical applications
backed by solid theory.



Two-sided one-to-one matching problems:
Marriage problem
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I Let M be the set of men, W be the set of women, and
N = M ∪W.

I Each man m has preference relation Pm over W ∪ {ν}.
I Each woman w has preference relation Pw over M ∪ {ν}.
I A problem is simply P = (Pm,Pw).
I M(P): Set of possible matchings.
I ϕ(P) ∈M(P) is a rule that recommends a matching.



Pareto–efficiency and the core

I For each R ∈ R,
µ is Pareto–efficient if there is no µ′ ∈M(P) such that

for each i ∈ N, µ′(i) Ri µ(i) and

there is i ∈ N, µ′(i) Pi µ(i).

I For each R ∈ R,
µ ∈ C(P) if there is no S ⊆ N for which there is µ′ ∈M(P)
such that

µ′(S) = S,

for each i ∈ S, µ′(i) Ri µ(i), and

there is i ∈ S, µ′(i) Pi µ(i).



Stability

I Individually rational: For each i ∈ N, µ(i) Ri ν.

A pair of different agents {m,w} blocks µ if w Pm µ(m) and
m Pw µ(w).

I Stable for P: Given P, µ is individually rational and there is no
blocking pair.

I S(P) is the set of stable matchings.



Strategy–proofness

A rule ϕ is strategy–proof

if for each P, each i ∈ M ∪W, and each P′i︸︷︷︸
lie

such that

ϕ( Pi︸︷︷︸
truth

,P−i)(i) Ri ϕ( P′i︸︷︷︸
lie

,P−i)(i).



The deferred acceptance algorithm
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The deferred acceptance algorithm
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The deferred acceptance algorithm

Pm1 Pm2 Pm3 Pm4 Pm5 Pw1 Pw2 Pw3 Pw4
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The deferred acceptance algorithm

Pm1 Pm2 Pm3 Pm4 Pm5 Pw1 Pw2 Pw3 Pw4

w1 w4 w4 w1 w1 m2 m3 m5 m1
w2 w2 w3 w4 w2 m3 m1 m4 m4
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The deferred acceptance algorithm

Pm1 Pm2 Pm3 Pm4 Pm5 Pw1 Pw2 Pw3 Pw4

w1 w4 w4 w1 w1 m2 m3 m5 m1
w2 w2 w3 w4 w2 m3 m1 m4 m4
w3 w3 w1 w3 w4 m1 m2 m1 m5
w4 w1 w2 w2 m5 m4 m4 m2 m2

m5 m5 m3 m3

The men proposing deferred acceptance algorithm produces the
matching:

w1 [m1]
w2 [m2]
w3 [m3]
w4 [m4]

m5 [m5]



The deferred acceptance algorithm

I Men proposing:
Pm1 Pm2 Pm3 Pm4 Pm5 Pw1 Pw2 Pw3 Pw4

w1 w4 w4 w1 w1 m2 m3 m5 m1
w2 w2 w3 w4 w2 m3 m1 m4 m4
w3 w3 w1 w3 w4 m1 m2 m1 m5
w4 w1 w2 w2 m5 m4 m4 m2 m2

m5 m5 m3 m3

I Women proposing:
Pm1 Pm2 Pm3 Pm4 Pm5 Pw1 Pw2 Pw3 Pw4

w1 w4 w4 w1 w1 m2 m3 m5 m1
w2 w2 w3 w4 w2 m3 m1 m4 m4
w3 w3 w1 w3 w4 m1 m2 m1 m5
w4 w1 w2 w2 m5 m4 m4 m2 m2

m5 m5 m3 m3



Results

I S(P) = C(P).
I S(P) ⊆ PE(P).
I Men (women)–proposing deferred acceptance algorithm

produces a men (women)-optimal stable matching, i.e. a stable
matching that every men (women) likes at least as well as any
other stable matching.

I There is no stable and strategy–proof rule.
I Men (women)–proposing deferred acceptance rule is

strategy–proof for men (women).



Two-sided one-to-one matching problems:
Medical residency market
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I Let S be the set of medical students, H be the set of hospitals.
I Each student s ∈ S has a preference relation Ps over the hospitals and

the prospect of “being unmatched.”
I For each hospital h, there is a quota qh ≥ 1.
I A subset of students S′ ⊆ S is feasible for hospital h if |S′| ≤ qh.
I Let F(S, qh) = {S′ ⊆ S : |S′| ≤ qh} denote the collection of feasible

subsets of students for hospital h.
I Each hospital h has a preference relation Ph over F(S, qh) that satisfies

“responsiveness”.



Two-sided one-to-one matching problems:
Medical residency market
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I A matching is a correspondence µ on the set S ∪ H such that
I for all s ∈ S, either µ(s) ∈ H or µ(s) = s,
I for all h ∈ H, µ(h) ∈ F(S, qh), and
I for all s ∈ S and h ∈ H, µ(s) = h ⇐⇒ s ∈ µ(h).

I A rule ϕ assigns a matching to each problem (PS,PH, qH).
I Most of the results in two–sided one–to–one matching markets are

extended simply to two–sided many–to–one matching markets.



One-sided one-to-one matching problems:
Roommate problem

µ

ν

N

1

2

3

4

I M(P): Set of possible matchings.
I ϕ(P) ∈M(P) is a rule that recommends a matching.



The core might be empty

P1 P2 P3

3 1 2
2 3 1
1 2 3



One-sided matching problems with endowments: House
exchange

Each person owns one object and needs one object.
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One-sided matching problems with endowments: House
exchange
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I Preferences for i ∈ N over O: Ri ∈ R.
I Allocations: A ≡ {all bijections α : N → O}.
I Endowment: ω ∈ A.
I A single-valued rule ϕ : RN × A→ A.



Pareto–efficiency

For each (R, ω),

α is Pareto–efficient if there is no α′ ∈ A such that:

for each i ∈ S, α′(i) Ri α(i) and

there is i ∈ S, α′(i) Pi α(i).



Core

For each (R, ω),

α ∈ C(R, ω) if there are no S ⊆ N and no α′ ∈ A such that:

α′(S) = S,

for each i ∈ S, α′(i) Ri α(i), and

there is i ∈ S, α′(i) Pi α(i).



Individual rationality

For each (R, ω)

α is individually rational if for each i ∈ N,

α(i) Ri ω(i).



Strategy–proofness

A rule ϕ is strategy–proof

if for each (R, ω), each i ∈ N, and each R′i︸︷︷︸
lie

such that

ϕ( Ri︸︷︷︸
truth

,R−i)(i) Ri ϕ( R′i︸︷︷︸
lie

,R−i)(i).



The top trading cycles algorithm
Gale’s top trading cycles (TTC) algorithm:

I Step 1: Let each agent point to her top choice house and each house
point to its owner. In this graph there is necessarily a cycle and no two
cycles intersect. Remove all cycles from the problem by assigning each
agent the house that she is pointing to.

I ...

I Step k: Let each remaining agent point to her top choice among the
remaining houses and each remaining house point to its owner (note
that houses leave with their owners and owners leave with their houses,
so a house remaining in the problem implies that the owner is still in
the problem and vice versa). There is necessarily a cycle and no two
cycles intersect. Remove all cycles from the problem by assigning each
agent the house that she is pointing to.

I The algorithm terminates when no agents and houses remain. The
assignments formed during the execution of the algorithm is the
matching outcome.



The top trading cycles algorithm

Let ω = (a, b, c, d, e, f , g)
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The top trading cycles algorithm
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The top trading cycles algorithm

R1 R2 R3 R4 R5 R6 R7
a© a d e a d c
... b© f d© c g f

... c© ... e© f© g©

••
6− f7− g

�

�



The top trading cycles algorithm

Let ω = (a, b, c, d, e, f , g)

R1 R2 R3 R4 R5 R6 R7

a© a d e a d c
... b© f d© c g f
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... e© f© g©



Results

For each (R, ω),

I C(R, ω) 6= ∅.

I |C(R, ω)| = 1 if the preferences are strict.

I Top trading cycles algorithm achieves a core matching. Hence, it
is Pareto–efficient and individually rational.

I It is also sustainable by a competitive equilibrium.

I The top trading cycle rule is strategy-proof.
I This model can be extended to situation where existing

house-owners and new entrants coexist (House allocation with
existing owners).

I A variation of the house exchange model to represent the
kidney–exchange market.



One-sided matching problems without endowments: House
allocation
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I Preferences for i ∈ N over O: Ri ∈ R.
I Allocations: A ≡ {all bijections α : N → O}.
I A single-valued rule ϕ : RN → A.



The serial dictatorship algorithms

I Step 0: Fix a rank ordering σ over the set of agents.
I Step 1: Assign σ(1) her most preferred house.

In general, for any t = 1, 2, ...
I Step t: Assign σ(t) her most preferred remaining house.

I The algorithm terminates when there is no agent or house left. If
there are still agents left, then they are not assigned a house.



Results

I Serial dictatorship rules are Pareto–efficient.

I Serial dictatorship rules are strategy–proof.

I We can define Step 0 : Pick a rank ordering σ uniformly at
random from the set of all rank orderings.

I Hence, a rule is ϕ : RN → ∆A and one can define random serial
dictatorship rules.

I These rules are ex–post Pareto–efficient and strategy–proof.

I There is an incompatibility between ex–ante Pareto–efficiency,
strategy–proofness, and fairness, i.e., two agents with the same
preferences receive the same random allocation to each other.



School choice problem
I
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I a set of students I = {i1, . . . , in},
I a set of schools S = {s1, . . . , sm},
I a capacity vector q = (qs1 , qs2 , . . . , qsm),

I a list of strict student preferences P = (Pi1 , . . . ,Pin) and

I a list of strict school priorities ≺= (≺s1 , . . . ,≺sm).

I A problem (P,≺, q), P for simplicity.



Assignments and rules
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I An assignment is a correspondence µ on the set I ∪ S such that

I for each i ∈ I, either µ(i) ∈ S or µ(i) = i,
I for each s ∈ S, either µ(s) ⊂ I or µ(s) = s,
I for each s ∈ S, |µ(s)| ≤ qs, and
I for each i ∈ I and s ∈ S, µ(i) = s ⇐⇒ i ∈ µ(s).

I For each P, let A(P) be the set of assignments.
I A rule is a single-valued function, ϕ(P) ∈ A(P).



Pareto–efficiency

I µ is Pareto–efficient if there is no µ′ ∈ A(P) such that for each
i ∈ N, µ′(i) Ri µ(i) and there is i′ ∈ N such that µ′(i′) Pi µ(i′).

I Set of Pareto–efficient assignments E(P).



Stability

I µ is non-wasteful if there is no student i and a school s such that

1. s Pi µ(i) and

2. |µ(s)| < qs.

I µ is individually rational if for all i ∈ I,

µ(i) Ri i.

I student i has justified envy at µ if there is a school s such that

1. s Pi µ(i) and

2. ∃j ∈ µ(s) such that i ≺s j.



Stability

I µ stable if it is individually rational, non-wasteful, and no
student has justified envy.

I Set of stable assignments Σ(P).



Strategy–proofness

A rule ϕ is strategy–proof

if for each (P,≺, q), each i ∈ I, and each P′i︸︷︷︸
lie

such that

ϕ( Pi︸︷︷︸
truth

,P−i)(i) Ri ϕ( P′i︸︷︷︸
lie

,P−i)(i).



The immediate acceptance algorithm [a.k.a. Boston
mechanism]

I Step 1: In this step, only the
first choices of the students are considered. For each school,
consider the students who have listed it as their
first choice and assign seats of the school to these students one at
a time following their priority order until either there is no seat
left or there is no student left who has listed it as his
first choice.

In general, for any t = 1, 2, ...
I Step t: In this step, only the t-th choices of the students are

considered. For each school, consider the students who have
listed it as their t-th choice and assign seats of the school to these
students one at a time following their priority order until either
there is no seat left or there is no student left who has listed it as
his t-th choice.



The deferred acceptance algorithm

I Step 1: Each student proposes to her first choice. Each school
tentatively assigns its seats to its proposers one at a time
following their priority order. Any remaining proposers are
rejected.

In general, for any t = 1, 2, ...
I Step t: Each student who was rejected in the previous step

proposes to her next choice. Each school considers the students it
has been holding together with its new proposers and tentatively
assigns its seats to these students one at a time following their
priority order. Any remaining proposers are rejected.

I The algorithm terminates when no student proposal is rejected
and each student is assigned her final tentative assignment



The top trading cycles algorithm
I Step 1: Assign a counter for each school which keeps track of how

many seats are still available at the school. Initially set the counters
equal to the capacities of the schools. Each student points to her
favorite school under her announced preferences. Each school points to
the student who has the highest priority for the school. Since the
number of students and schools are finite, there is at least one cycle.
Moreover, each school can be part of at most one cycle. Similarly, each
student can be part of at most one cycle. Every student in a cycle is
assigned a seat at the school she points to and is removed. The counter
of each school in cycle is reduced by one and if it reduces to zero, the
school is also removed. The counters of the schools not in a cycle
remain the same.
In general, for any t = 1, 2, ...

I Step t: Each remaining student points to her favorite school among the
remaining schools and each remaining school points to the student with
highest priority among the remaining students. There is at least
one-cycle. Every student in a cycle is assigned a seat at the school that
she points to and is removed. The counter of each school in a cycle is
reduced by one and if it reduces to zero the school is also removed.



Results

IA DA TTC
Pareto–efficiency + − +

Stability − + −
Strategy–proofness − + +

I There is an incompatibility between Paerto–efficiency, stability,
and strategy–proofness.

I In Boston, the immediate acceptance rule was originally
implemented in July, 1999 but was abandoned in 2005 and
replaced by the deferred acceptance rule.

I The school district orders students by priority block. Within each
block, students are ordered via a lottery system. How to break
the ties is also very important.



Mixture of models

I Allocation of not “convex” resources (not money).
I Preferences? Priorities? a mix?
I Año rural en Colombia: mixture of two sided matching and

school choice.
I Coming soon: In what are we working?



Thank you


