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Zero-Inflated Embeddings

Analyzing homicide data is a challenging task due to its
low-frequency and spatial sparsity.
We use Zero Inflated Exponential Family Embeddings (ZIE)
to analyze spatial patterns in Bogotá, Colombia.
ZIE model provides useful insights about the different types of
cuadrantes with an intuitive classification of high, medium,
and low homicide-rate.
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Related Literature

Predictive models (Mohler et al.; Jin et al.) rely on large data
sets to predict criminal events.
Embedding methods have proven useful in identifying similar
criminal dynamics in spatial and temporal units (Zhu et al.;
Wang et al.; Yang et al.).
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Data

We focus our analysis on 1051 police jurisdictions called
cuadrantes, made up in average by 10 - 15 blocks.
We use the six weekly police patrol shifts used by the police
department: morning, afternoon, and night shifts,
differentiating between weekends and weekdays.
Each observation is a count of homicides for each cuadrante
in a police shift. Over the entire period for which data is
available (2013-2019), this results in a very sparse matrix with
less than 0.4% of non-zero entries.
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Data

Figure: Cuadrantes in which homicides occurred during weeks shifts 1, 2,
and 3 of a week in 2019.
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Zero-Inflated Embeddings

Exponential Family Embeddings (EFE) (Liu and Blei, 2017)
aim to learn vector representations of items.
For each item (spatial region) j ∈ {1, ..., J} , learn
embedding vector ρj ∈ RK and context vector αj ∈ RK

from observation-context pairs.
Need three ingredients: context, conditional distribution and
embedding structure.
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Conditional Distribution

Conditional distribution of xi given its context yi

x ∼ ExpFam(η(yi, si), T (xi))

with natural parameter through η and sufficient statistic T

η(yi, si) = f

ρ>si

∑
j∈ci

yijαj

 .
EFE conditional probability p(xi|yi; ρsi , αci) captures the
interaction between items the observations in si and
their context in ci: counts for all other cuadrantes in the
city over the same period.
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Exposure modeling

Zero-valued observations dominate: embeddings focus on
non-zeros by modeling probability of being exposed to context.

For each xij define bij ∼ Bernoulli(uij)
Fit logistic regression: uij = logit(w>j vi + w0

j ) with vi vector
of exposure covariates.

xij =
{
δ0 bij = 0
ExpFam(η(yi, si), T (xi)) bij = 1
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Implementation

We fit low dimensional embeddings for each of the police
cuadrantes where homicides have occurred for 2018 and 2019.
We use Poisson (p) and Negative Binomial (nb) as exponential
families, and we use log softplus(·) as the link function f .
The exposure covariates are: indicator for holiday, indicator
for weekend, patrol shift, and month. We fit the embeddings
using 80% of the data and test on the remaining 20%,
corresponding to the most recent observations.
The log-likelihood of observations given their contexts is
maximized with gradient descent using AdaGrad. During
training, 10% of the training data is used for validation of
convergence.
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Test Metrics

The Poisson zero-inflated embeddings using city context and
temporal exposure covariates (ZIEC-p) has the best performance
for different specifications of conditional distribution, context, and
exposure covariates.

K EFE-p ZIE-p ZIEC-p

8 all -0.057(0.014) -0.040(0.006) -0.048(0.010)
pos -0.91(0.009) -0.579(0.032) -0.459(0.100)

16 all -0.056(0.013) -0.040(0.006) -0.048(0.010)
pos -0.803(0.010) -0.56(0.032) -0.441(0.083)

32 all -0.059(0.012) -0.043(0.006) -0.049(0.009)
pos -0.886(0.007) -0.656(0.019) -0.484(0.066)

Table: Predictive log-likelihood embeddings with Poisson exponential
family.
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Principal and Exposure Components

Principal Component Analysis
to investigate the resulting
embeddings.
First two PC explain 70.7% and
6.95% of the variance.
Significant correlation between
exposure probability and total
homicide count.

Figure: Correlation between
exposure probability and total
homicide count.



Introduction Methodology Results Conclusions Graph Restriction

Principal and exposure components

Significant correlation between the first PC and total homicide
count: Cuadrantes where homicides occur more often cluster
together.

(a) PCA plot of the embedding (b) Correlation between first PC
and total homicide count

Figure: Analyzing the role of the total homicide count on the embeddings.
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Clustering and dimensionality reduction

UMAP and spectral clustering provide the best and most intuitive
results: the resulting embeddings cluster together cuadrantes with
high, medium, and low homicide rates.

Figure: UMAP and spectral clustering over 2018-2019 homicide data.
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Understanding clusters through spatial covariates
We use socio-demographic characteristics as regressors for
explaining the spectral clusters created from the embeddings.

Figure: SHAP values for spatial features to explain spectral clusters.
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Robustness over changing training periods

Even though the spatial covariates explain part of the cluster
assignments, these are static features that do not change over
time: homicides are dynamic phenomena and therefore we
expect both the embeddings and cluster assignments to vary
over time.
The overall structure of the embedding and the cluster
assignments remain mostly equal. However, the clusters
assignments do not remain static.
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(a) Week 1

(b) Week 17

Figure: Cuadrante shifting from a low-rate cluster to a high-rate one over
the course of a year (cluster colors may vary).
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(a) Week 33

(b) Week 49

Figure: Cuadrante shifting from a low-rate cluster to a high-rate one over
the course of a year (cluster colors may vary).
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Conclusions

Using a zero-inflated model leads to significant performance
gains over the non-inflated models.
The embeddings obtained generally have a similar structure
and intuitively map the locations along a dimension according
to their total homicide count.
Cuadrantes are divided into three clusters, which correspond
to those with high, medium, and low homicide rates, showing
expected correlations with socio-demographic attributes.
Embeddings remain generally stable over time, but they are
not completely static.
ZIE model captures relevant patterns from historic homicide
data and we therefore expect to be able to use them to
improve the predictive capabilities of other homicide
prediction models.
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Graph Restrictions for Signal Processing of Homicides Data

Graph Restrictions for Signal
Processing of Homicides Data
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Introduction

This work was inspired by two papers and it intends to combine
notions from both of them:

GLoG (Homicide Prediction Using Sequential Features from
Graph Signal Processing)
Kernel Warping (A Manifold Learning Data Enrichment
Methodology for Homicide Prediction)

The idea is to apply the GLoG methodology to graphs in which
nodes contain any type of crime but the signal only contains
homicide data.
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GLoG
The Laplacian of Gaussian is a methodology for edge detection
commonly used in image processing.
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GLoG

The Graph Laplacian of Gaussian is an extension to graphs of this
methodology. It consists of 3 steps:

1. Graph Fourier transform.

GFT = UT f (1)

2. Boundary detection.

LoG(f) = ∇2G ∗ f (2)

GLoG(f) = iGFT (∇̂2G · f̂) (3)

3. Most relevant edge nodes.

GLoG(τi)GLoG(τj) < 0 (4)
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GLoG

Here we see a simple example with a signal and the steps taken to
find the edge nodes.
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GLoG

The result of applying GLoG to a graph looks like this. On the left
we have the graph with the signal and on the right the edge node
configuration.
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Kernel Warping

The idea of kernel warping is to construct kernels from homicide
data but ”warp” them to the underlying manifold with all crime
data. We use Gaussian kernels.

k(x, xi) = 1
2σ2 exp

(
−|x− xi|2

2σ2

)
(5)

Here is the warped kernel.

k̃(x, si) = k(x, si)− kT
x,Z (I + λLKZ,Z)−1 λLksi,Z (6)
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Kernel Warping
This is the warped kernel. On the left we have the crime data
(blue) and homicides (red). On the right we have the intensities
from the kernels and the homicides for a given month.
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Restricted Graphs
This are the restricted graphs for 3 different weeks. The red nodes
had homicides occurred in them.
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Results

The original GLoG had a HRAUC of 0.73 while the new one has
0.85. The increase is substantial but misleading. Two things
changes, graph generation and graph restriction.



Introduction Methodology Results Conclusions Graph Restriction

Results

This constitutes a more just comparison. All models were trained
with the same generated graph.

The uniformly distributed grid is clearly easier to predict.
There is a marginal gain from restricting the graph.
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Dynamic Network Analysis of Spatio-Temporal Crime
Incidents

Dynamic Network Analysis of
Spatio-Temporal Crime Incidents
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What we do...

Basic descriptive tools of network theory to describe the
topology of a spatio-temporal weekly graph of crimes in
Bogotá (period 2013 to 2019).
Centrality and community detection measures suggest time
persistent structural characteristics of the graphs.
Persistence of high page rank centrality measures suggests the
existence of certain sink hotspots,
High degree betweenness centrality of nodes suggests critical
crossroads.
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Introduction

In previous papers, [?] and [?], we have explored the benefits
of modeling a background graph of spatial crime incidents.
This process has motivated us to study the graph structure
described above to discover stylized facts.
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Results

Figure: Evolution of graph centrality
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Results

Figure: Analysis of betweenness in crime graphs.

It is tempting to interpret the highest betweenness centrality
nodes as criminal pathways among crime hotspots.
Suggest police interventions.
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Results

Figure: Evolution of the number of communities detected
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Results

Figure: Evolution of the size of the largest community.
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Results

Figure: Detected communities (the size of the nodes representa the
number of crimes).
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Results

Mean Std. Deviation
Number of Nodes 384.4 58.1
Average Degree 6.8 0.8

Average Path Length 9.6 1.4
Diameter of Largest Component 27.7 4.5

Overall Clustering 0.49 0.01
Fraction of Nodes in Largest Component 0.95 0.16
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