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1. Introduction

We prove a version of the theorem of Geanakoplos and Polemarchakis (1986) on
the existence of equilibrium in two-period exchange economies with incomplete,
numeraire asset markets. By assuming non-negative asset return, we provide a
shorter proof and, moreover, we relax the monotonicity assumption. In partic-
ular, one single agent with strictly monotone preferences would suffice. As an
application, we show that with von Neumann-Morgenstern utility functions, even
if agents disagree on zero-probability events but do not plan to go bankrupt in
any state, equilibrium still exists. Therefore, even with incomplete markets, in a
two-period model with no bankruptcy, non-equivalent beliefs pose no problem for
the existence of equilibrium.

2. The Model

The model is similar to that developed by Geanakoplos and Polemarchakis
(1986). H = {0, 1, ...,H}, with H ∈ N, is a set of agents. S = {0, 1, ..., S}, with
S ∈ N, is the set of possible future states of the world. L = {0, 1..., L} , with
L ∈ N, is the set of commodities, so the consumption set is R(L+1)(S+1)

+ . Each
agent h ∈ H is endowed with wh ∈ R(L+1)(S+1)

+ . A = {0, 1, ..., A}, with A ∈ N,
is the set of assets. The return of asset a ∈ A is the (column) vector va ∈ RS

which pays in units of the first commodity, l = 0 (the numeraire of the economy).
The matrix of asset returns is V =

[
v0 v1 ... vA

]
. For each s ∈ S, denote

vs =
(
v0

s , v
1
s , ..., v

A
s

)
∈ RA+1, taken as a row vector. A portfolio is a (column)

vector y ∈ RA+1. Let p ∈ R(L+1)(S+1)
+ and q ∈ R(A+1) denote commodity spot

prices and asset prices, respectively.
Agent h has preferences represented by utility function Wh : R(L+1)(S+1)

+ −→ R
and, at prices (q, p) , faces the budget set

Bh (q, p) =
{

(y, x) ∈ RA × R(L+1)(S+1)
+ :

q · y = 0
∀s ∈ S, ps · (xs − wh

s ) ≤ ps,0 (vs · y)

}
Agents maximize their utilities subject to their budget constraint.
We interpret this model as one in which only assets are traded at time zero

(t = 0) but consumption plans are made for time one (t = 1) in each state of nature
that might occur in that period, s ∈ S. At time zero net expenditure in assets is
zero and at time one agents receive an endowment in each state of nature that
they can sell to finance consumption and net financial positions.

In what follows, 1s,l is a vector in R(L+1)(S+1) that contains 0 everywhere,
except in the component (s, l), where it is 1.

We will use the following assumptions.
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Condition 1 For each h, Wh is continuous and quasiconcave on R(S+1)(L+1)
+ .

Condition 2 For each h, wh � 0.

Condition 3 V > 0 (i.e., V ≥ 0, V 6= 0).

Condition 4 ∀s ∈ S, ∃h ∈ H such that for all x ∈ R(S+1)(L+1)
+ and ε > 0,

Wh (x+ ε1s,0) > Wh (x).

Remark 1 Condition 4 is considerably weaker than Condition (A3) in
Geanakoplos and Polemarchakis (1986): there, Condition (A3) requires that ev-
ery agent strictly prefer more of the numeraire in each state. Here, Condition 4
requires that, in any state, there be at least one agent that strictly prefers more of
the numeraire in that state. In particular, one single agent with strictly monotonic
preferences, as in Geanakoplos and Polemarchakis (1986), would imply Condition
4.

For normalized prices of assets and commodities, define Q = {q ∈ RA+1
+ :

‖q‖ = 1}, 4 = {p ∈ RL+1
+ : ‖p‖ = 1}, where, given x ∈ Rm, ‖x‖ ≡

m∑
i=1

|xi|.

Our equilibrium concept is:

Definition 1 A competitive equilibrium with a numeraire financial structure V
is a 4-tuple of asset prices, commodity prices, asset allocations and commodity
allocations (q∗, p∗, y∗, x∗) ∈ Q × 4S+1 × R(A+1)(H+1) × R(L+1)(S+1)(H+1)

+ such
that:

1. For all h ∈ H, (y∗h, x∗h) ∈ arg max(y,x)∈Bh(q∗,p∗)W
h.

2.
∑

h∈H(x∗h − wh) ≤ 0 and, for every s,

p∗s,l > 0⇒
∑
h∈H

(x∗hs,l − wh
s,l) = 0

3.
∑

h∈H y
∗h = 0.

Remark 2 Condition 3 implies little loss of generality, for it suffices that just
one asset with strictly positive payoffs (for instance a riskless bond) be available
in the economy. That is, consider a financial structure Ṽ =

[
ṽ0 ṽ1 ... ṽA

]
such that ṽ0 � 0 (but which may violate Condition 3). Find a scalar k such that
ṽa + kṽ0 ≥ 0 for each a = 1, ..., A, and construct an alternative financial structure
V =

[
v0 v1 ... vA

]
, with v0 = ṽ0 and va = ṽa +kṽ0 for every a = 1, ..., A. It

is immediate that structure V satisfies Condition 3, and it follows by construction
and definition that the economy has a competitive equilibrium (q∗, p∗, x∗, y∗) with
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structure V , only if (q̃∗, p̃∗, x̃∗, ỹ∗) is an equilibrium with structure Ṽ , for p̃∗ = p∗,
x̃∗h = x∗h, q̃∗0 = q∗0 , q̃∗a = q∗a−kq∗0 for each a = 1, ..., A, and ỹ∗h0 = y∗h0 +k

∑A
a=1 y

∗h
a

and ỹ∗ha = y∗ha , for each a = 1, ..., A, for all h.

For completeness, we include the following.

Lemma 1 Let K ⊂ RA+1 × R(S+1)(L+1) be a compact rectangle with center at
the origin. For each individual h ∈ H, consider the truncated individual demand
correspondence f̂h (·;K) : RA+1 × R(S+1)(L+1)

+ ⇒ RA+1 × R(S+1)(L+1)
+ , defined by

f̂h (q, p;K) = arg max
(y,x)∈Bh(q,p;K)

Wh

where Bh (q, p;K) = Bh (q, p) ∩ K. Under Conditions 1 and 2, f̂h (·;K) is
nonempty-, compact-, convex-valued and upper hemicontinuous at each (q, p) ∈
RA+1 × R(S+1)(L+1)

+ , with q 6= 0 and ps 6= 0 for all s.

Proof (Geanakoplos and Polemarchakis, 1986). By continuity and compactness,
f̂h (q, p;K) is nonempty and compact, and by quasiconcavity of Wh and the con-
vexity of the budget set, it is convex.

To show upper hemicontinuity at each (q, p) ∈ RA × R(S+1)(L+1)
+ with q 6= 0

and ps 6= 0 for all s, let (qn, pn)∞n=1 be a sequence such that (qn, pn)→ (q, p) and
let (yn, xn)∞n=1 be such that (yn, xn) ∈ f̂h (qn, pn;K). Since (yn, xn)∞n=1 lies in K,
there exists a convergent subsequence

(
yn(k), xn(k)

)∞
k=1
→ (y, x) ∈ Bh (q, p;K) .

Assume that (y, x) /∈ f̂h (q, p;K). Then, there exists (y, x) ∈ B (q, p;K) such
that Wh(x) > Wh(x). By continuity, for λ < 1 but close enough to 1, we
have Wh(λx) > Wh(x); and, again by continuity, for large enough k, Wh(λx) >
Wh(xn(k)).

Let yn = arg min {‖y − y′‖ : y′ · qn = 0}. Then by the Theorem of the Max-
imum, since q 6= 0, then qn → q implies that yn → y. We know that (y, x) ∈
B (q, p;K) . Since ∀s ∈ S, ps ·wh

s ∈ R++, it is easy to see that for λ < 1, but close to
1, ps·

(
λxs − wh

s

)
< ps,0 (vs · λy) and (λy, λx) ∈ K. Since (qn(k), pn(k))→ (q, p) and

yn(k) → y then, for large k, we have pn(k),s ·
(
λxs − wh

s

)
< pn(k),s,0

(
vs · λyn(k)

)
and

(
λyn(k), λx

)
∈ K which means that, for large enough k,

(
λyn(k), λx

)
∈

B
(
qn(k), pn(k), w;K

)
and, hence Wh(xn(k)) ≥Wh(λx)), which is impossible. �

Theorem 1 Under Conditions 1 – 4, there exists a competitive equilibrium.
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Proof Assume, without loss of generality, that V has full column rank.
Fix n ∈ N, and let

Kh
n =

[
− n

H + 1
,

n

H + 1

]A+1

×
{
x ∈ R(S+1)(L+1) : −nwh ≤ x ≤ nwh

}
Kn = [−n, n]A+1 ×

{
x ∈ R(S+1)(L+1) : −n

∑
h∈H

wh ≤ x ≤ n
∑
h∈H

wh

}

and let F̂ (·;n) : RA+1 × R(S+1)(L+1)
+ ⇒ RA+1 × R(S+1)(L+1)

+ be the aggregate
truncated demand correspondence, defined by F̂ (q, p;n) =

∑
h∈H f̂

h
(
q, p;Kh

n

)
.

Then F̂ (·;n) is nonempty-, compact-, convex-valued and upper hemicontinuous
at each (q, p) ∈ RA × R(S+1)(L+1)

+ , q 6= 0 and ps 6= 0 for all s. Also, if (yh, xh) ∈
f̂h
(
q, p;Kh

n

)
, then ps ·

(
xh

s − wh
s

)
≤ ps,0

(
vs · yh

)
, so if (y, x) ∈ F̂ (q, p;n), then

ps ·
(
xs −

∑
h∈H w

h
s

)
≤ ps,0 (vs · y).

Define correspondence Φ : Q×4S+1×Kn ⇒ Q×4S+1×Kn, by Φ1×Φ2×Φ3,
where

Φ1(q, p, (y, z)) = arg max
q′∈Q

{q′ · y} ⊆ Q

Φ2(q, p, (y, z)) =
∏
s∈S

arg max
p′s∈4

{p′s · zs} ⊆ 4S+1

Φ3(q, p, (y, z)) = F̂ (q, p;n)−

(
0,
∑
h∈H

wh

)
⊆ Kn

Φ1 and Φ2 are nonempty-, compact-, convex-valued and upper hemicontinuous
and, by Lemma 1, Φ3 has the same properties. Therefore, Φ is nonempty-,
compact-, convex-valued and upper hemicontinuous.

By Kakutani’s fixed-point theorem, there exists (q∗, p∗, y∗, z∗) ∈ Φ(q∗,
p∗, y∗, z∗) (in particular, q∗ · y∗ = 0).

We first note that V y∗ ≤ 0. Suppose that vs · y∗ > 0; then, using Condition 3,
let q = (q∗ + vs) ∈ RA+1

+ \ {(0, ..., 0)}, which implies that for some λ > 0, λq ∈ Q
and λq · y∗ = λ (q∗ + vs) · y∗ = λvs · y∗ > 0 in contradiction with the fact that
q∗ ∈ arg maxq′∈Q {q′ · y∗} .

Secondly, p∗s · z∗s ≤ p∗s,0vs · y∗ ≤ 0, and, hence, z∗s ≤ 0. Otherwise, if for some
l, z∗s,l > 0, then for ps = (0, ..., 1, ...0), one would have ps · z∗s = z∗s,l > 0, in
contradiction with the fact that p∗s ∈ arg maxp′s∈4 {p

′
s · z∗s} and p∗s · z∗s ≤ 0.

Also, since z∗s =
∑

h∈H x
∗h
s −

∑
h∈H w

h
s ≤ 0 and x∗h ∈ R(L+1)(S+1)

+ , then∥∥x∗hs

∥∥ ≤ ∥∥∥∑h′∈H w
h′

s

∥∥∥ for all h.
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Now, for each n ∈ N, let (q∗n, p
∗
n, y
∗
n, z
∗
n) be a fixed point, and let

(y∗n, z
∗
n) =

(∑
h∈H

y∗hn ,
∑
h∈H

x∗hn −
∑
h∈H

wh

)

By the above boundedness of
(
x∗hn

)∞
n=1

and the compactness of Q and 4S+1,

there exists a subsequence such that
(
q∗n(k), p

∗
n(k), x

∗
n(k)

)
→ (q∗, p∗, x∗) (in partic-

ular, z∗n(k) → z∗ = x∗ −
∑

h∈H w
h, and p∗s ∈ arg maxp′s∈4 {p

′
s · z∗s}).

Suppose that for some s, p∗s,0 = 0. By Condition 4, there is an agent h such

that for every ε > 0, Wh(x∗h + ε1s,0)) > Wh(x∗h). Let ε = minl

{
wh

s,l

}
> 0 (by

Condition 2). Then, Wh(x∗h + ε1s,0)) > Wh(x∗h), so, by continuity, for large k,

Wh
((

1−
(
p∗s,0

)
n(k)

)
x∗hn(k) + ε1s,0

)
> Wh

(
x∗hn(k)

)
Since x∗hn(k) is bounded and (ps,0)n(k) −→ 0, for large k, (ps,0)n(k) < 1, and

((
1−

(
p∗s,0

)
n(k)

)
y∗hn(k),

(
1−

(
p∗s,0

)
n(k)

)
x∗hn(k) + ε1s,0

)
∈ Bh

(
q∗n(k), p

∗
n(k);Kn(k)

)
which contradicts the fact that

(
y∗hn(k), x

∗h
n(k)

)
∈ f̂h

(
q∗n(k), p

∗
n(k);Kn(k)

)
.

It follows that p∗s,0 > 0 and, since V has full rank, we can define y∗h as the
unique solution to

vs · y∗h =
1
p∗s,0

(
p∗s ·

(
x∗hs − wh

s

))
, for all s ∈ S (1)

Now, for large n,
(
y∗h, x∗h

)
is interior to Kh

n , and by continuity and quasicon-
cavity of Wh,

(
y∗h, x∗h

)
is maximal in B (q∗, p∗) . Also, q · y∗ = 0 and V y∗ ≤ 0.

Now, suppose y∗ 6= 0; then, V (−y∗) ≥ 0 and there is s ∈ S such that vs (−y∗) > 0;
by Condition 4, ∃h ∈ H such that

Wh
(
x∗h + vs (−y∗) 1s,0

)
> Wh

(
x∗h
)

whereas
(
y∗h − y∗, x∗h + vs (−y∗) 1s,0

)
∈ Bh (p∗, q∗), contradicting the maximal-

ity of
(
y∗h, x∗h

)
. Therefore, y∗ = 0.

Finally, by definition of y∗h (see Equation 1), p∗s ·
(
x∗hs − wh

s

)
= p∗s,0vsy

∗h, so
p∗s · z∗s = p∗s,0vsy

∗ = 0. Hence, since z∗s ≤ 0, then z∗s,l = 0 whenever ps,l > 0. �
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3. Application

We consider the case in which each agent’s utility function has a von Neumann-
Morgenstern expected utility representation, but in which agents may disagree on
zero-probability events. We carry on the assumption that even if agents assign
probability zero to a particular event, they do not plan to go bankrupt on that
event.

Condition 5 For each h, Wh can be written as
∑S

s=0 π
h (s)uh

s (xs) where πh :
S →[0, 1] is agent h probability distribution (i.e., beliefs) over S, uh

s is continuous,
concave.

Condition 6 For each s ∈ S, there exists an h ∈ H such that, for all x ∈
R(S+1)(L+1)

+ and ε > 0, uh
s (x+ ε1s,0) > uh

s (x).

Theorem 2 Under Conditions 2, 3, 5 and 6, there is a 4-tuple of asset prices,
commodity prices, asset allocations and commodity allocations (q∗, p∗, y∗, x∗) ∈
Q×4S+1 × R(A+1)(H+1) × R(L+1)(S+1)(H+1)

+ such that:

1. For all h ∈ H, (y∗h, x∗h) ∈ arg max(y,x)∈Bh(q∗,p∗)W
h and moreover, for

every s,

x∗hs ∈ arg max
{x∈RL+1

+ |p∗s ·x≤p∗s ·wh
s +p∗s,0vsy∗h}

uh
s

2.
∑

h∈H(x∗h − wh) ≤ 0 and,

ps,l > 0⇒
∑
h∈H

(x∗hs,l − wh
s,l) = 0

3.
∑

h∈H y
∗h = 0.

Notice that Conditions 5 and 6 allow for beliefs to be completely different.
In particular, we do not require them to be equivalent in the sense that for all
h, j ∈ H, πh (s) = 0 ⇔ πj (s) = 0. It follows that equivalence of beliefs is not a
necessary condition for existence of equilibrium in a two-period economy with no
bankruptcy. Also, the theorem requires that (p∗s, x

∗
s) be a spot market competitive

equilibrium in state s. While this is obvious for states to which all households at-
tach nonzero probability, it has to be argued independently when that is not the
case.

Proof Assume, without loss of generality, that V has full column rank.
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For each n ∈ N, define the probability measures πh
n : S −→ (0, 1] by

πh
n (s) =

(
πh (s) +

1
n

)(
n

n+ S + 1

)
and define Wh

n :R(S+1)(L+1)
+ −→ R by, Wh

n (x) =
∑S

s=0 π
h
n (s)uh

s (xs). Conditions 2,
3, 5 and 6 on Wh

n imply Conditions 1 – 4. Therefore, by theorem 1, there exists
(q∗n, p

∗
n, y
∗
n, x
∗
n) ∈ Q × 4S+1 × R(A+1)(H+1) × R(L+1)(S+1)(H+1)

+ such that for all
h ∈ H,

(y∗hn , x∗hn ) ∈ arg max
(y,x)∈Bh(q∗n,p∗n)

∑
s∈S

πh
n (s)uh

s (xs)

and for each s,

x∗hn,s ∈ arg max
{x∈RL+1

+ |p∗n,s·x≤p∗n,s·wh
s +p∗n,s,0(vs·y∗hn )}

uh
s (x)

and

p∗n,s · x∗hn,s = p∗n,s · wh
s + p∗n,s,0

(
vs · y∗hn

)
(2)

Also, ∑
h∈H

(x∗hn − wh) ≤ 0 (3)

p∗n,s,l > 0⇒
∑
h∈H

(x∗hn,s,l − wh
s,l) = 0

and ∑
h∈H

y∗hn = 0

By Equation 3, for each h ∈ H,
(
x∗hn

)
n∈N is bounded, and by Equation 2 it fol-

lows that
(
y∗hn

)
n∈N is bounded. Therefore, since (q∗n, p

∗
n) is also bounded, it follows

that there exist (q∗, p∗, y∗, x∗) ∈ Q×4S+1×R(A+1)(H+1)×R(L+1)(S+1)(H+1)
+ and

a subsequence such that
(
q∗n(k), p

∗
n(k)

)
−→ (q∗, p∗), and for every h,

(
y∗hn(k), x

∗h
n(k)

)
−→

(
y∗h, x∗h

)
.

Clearly,
(
y∗h, x∗h

)
∈ Bh (q∗, p∗) . We show that

(
y∗h, x∗h

)
∈

arg max(y,x)∈Bh(q∗,p∗)W
h. Suppose to the contrary that there exist an h ∈

H and (y, x) ∈ Bh (q∗, p∗) such that Wh(x) > Wh(x∗h). By continuity, for
λ < 1 but close enough to 1, we have Wh(λx) > Wh(x∗h). Let yn =
arg min {‖y − y′‖ : y′ · qn = 0}. Then by the Theorem of the Maximum, since
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q∗ 6= 0 then qn(k) → q∗ implies that yn(k) → y. We know that (y, x) ∈ Bh (q∗, p∗) .
Since ∀s ∈ S, ps · wh

s ∈ R++, it is easy to see that for λ < 1, but close to 1,
ps ·

(
λxs − wh

s

)
< ps,0 (vs · λy) . Since (qn(k), pn(k)) → (q∗, p∗) and yn(k) → y

then, for large k, we have pn(k),s ·
(
λxs − wh

s

)
< pn(k),s,0

(
vs · λyn(k)

)
which

means that, for k large enough,
(
λyn(k), λx

)
∈ B

(
qn(k), pn(k), w

)
and, hence

Wh
n(k)(xn(k)) ≥Wh

n(k)(λx), which implies Wh(x∗h) ≥Wh(λx) because πh
n −→ πh,

a contradiction.
Again by the Theorem of the Maximum, and since{

x ∈ RL+1
+

∣∣ ps · x ≤ ps · wh
s + ps,0 (vs · y)

}
defines a continuous correspondence (on ps and y) at every ps 6= 0, it follows that(
x∗hn(k)

)
has a subsequence that converges to some point in:

arg max
{x∈RL+1

+ |p∗s ·x≤p∗s ·wh
s +p∗s,0(vs·y∗h)}

uh
s

But since
(
x∗hn(k)

)
k∈N

itself converges to x∗hs , it follows that

x∗hs ∈ arg max
{x∈RL+1

+ |p∗s ·x≤p∗s ·wh
s +p∗s,0(vs·y∗h)}

uh
s

If p∗s,l > 0, then, by construction,
∑

h∈H(x∗hn(k),s,l − w
h
s,l) = 0, which implies

that
∑

h∈H(x∗hs,l − wh
s,l) = 0. �

References

Geanakoplos, J. & Polemarchakis, H. (1986). Existence Regularity and Constrained
Sub-Optimality of Competitive Allocations When Asset Market is Incomplete.
Uncertainty, Information and Communication Essays in Honor of Keneth J.
Arrow, volume III. Cambridge University Press, Cambridge.

Brazilian Review of Econometrics 28(2) November 2008 247


