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Motivation

The study of signals is very relevant in time series analysis:
1 Early detection of diseases.

Today: Study a method to detect periodicity and
quasi-periodicity in time series signals.

What’s new? The method combines computational topology
with time series analysis.
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Definition

Sliding Windows

Definition

Let f : R −→ R, M ∈ N y τ ∈ R such that τ > 0. Define the
window of f as a point in RM+1 with base t ∈ R as

SWM,τ f (t) =


f (t)

f (t + τ)
...

f (t + Mτ)

 .

The original time series {f (t)}t defines a point-cloud in RM+1.

Mτ is a parameter define as the window size.
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Example

Baseline example
cos(t)

Let f (t) = cos(t). The the Sliding Windows of f with parameters
M and τ is

SWM,τ f (t) =


cos(t)

cos(t + τ)
...

cos(t + Mτ)

 = cos(t)


1

cos(τ)
...

cos(Mτ)

−sin(t)


0

sin(τ)
...

sin(Mτ)


Define u = [1, cos(τ), · · · , cos(Mτ)] and
v = [0, sin(τ), · · · , sin(Mτ)]. Thus, the window can be rewritten as

SWM,τ f (t) = cos(t)u − sin(t)v .

If u and v are linearly independent, SWM,τ f (t) is a planar curve in
the vector space generated by u and v .
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Example

Baseline example

Figure: Panel to the left is plotted f (t) = cos(t) in the interval [0, 2π].
Panel to the right has SWM,τ f (t) taking M = 2 and τ = 2π

3
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Example

Takeaways

The degree to which the image of SWM,τ f traces a closed
curve is a measure of how periodic the function is.

The geometry of the curve can be quite complicated to study.
Thus the necessity to study the geometry of similar objects.
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Simplicial Complex

Simplex I

Definition

Let P = {p0, p1, ..., pm} a set of points in Rn. The simplex
generated by P is define as

∆(P) =


n∑

j=0

tjpj

∣∣∣ tj ≥ 0,
n∑

j=0

tj = 1

 .

Moreover, given a simplex ∆(P), for any pi ∈ P, the opposite face
of pi is ∆(P \ {pi}).
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Simplicial Complex

Simplex II

Given P = {p0, p1, p2, p3}, the 3 simplex is the following

p0 p1

p2

p3

And the opposite face of p3 is the triangle generated by
{p1, p2, p3}. A face is always a Simplex.
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Simplicial Complex

Simplicial Complex
Definition

Definition

A simplicial complex in Rn is an ordered pair K = (V ,Σ) where V
is a set of points in Rn and Σ is a collection of simplex satisfying:

1 ∀s ∈ Σ, if s = ∆(P) then P ⊆ V .

2 Σ is closed under face relation.

3 If s, b ∈ Σ then s ∩ b ∈ Σ or is empty. s ∩ b is define as the
common face between s and b.

Moreover, the dimension of K is define as

dim(K ) = sup
s∈Σ

dim(s)
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Simplicial Complex

Simplicial Complex
Example

Figure: Simplicial Complex
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Simplicial Complex

Homology of Simplicial Complex

Definition

Let K be a simplicial complex and p a prime number. Let Fp be
the finite field with p elements. Define Cq(K ) as the vector space
generated by the q-dimensional simplices of K . Moreover, if
c ∈ Cq(K ) then c can be expressed as

c =
∑
s∈Σ

q=dim(s)

γss

where γs ∈ Fp for all s ∈ Σ such that dim(s) = q.



Introduction to Sliding Windows Basic Topological Concepts Approximating SWM,τ f (t) Empiric Exercise Appendix

Groups of Homology

Outline

1 Introduction to Sliding Windows
Definition
Example

2 Basic Topological Concepts
Simplicial Complex
Groups of Homology
Persistence
Topological properties of the data

3 Approximating SWM,τ f (t)
Convergence of φ(t)
Geometric Structure of the embedding

4 Empiric Exercise
Scoring
Effectiveness

5 Appendix



Introduction to Sliding Windows Basic Topological Concepts Approximating SWM,τ f (t) Empiric Exercise Appendix

Groups of Homology

Homology of Simplicial Complex

Definition

Let K be a simplicial complex and define ∂q : Cq(K ) −→ Cq−1(K )
as

∂q([p0, ..., pq]) =

q∑
i=0

(−1)i [p0, ..., p̂i , ..., pq]

Theorem

Let K be a simplicial complex of dimension n. Then

0
∂−→ Cn(K )

∂−→ Cn−1(K )
∂−→ · · · ∂−→ C1(K )

∂−→ C0(K )
∂−→ 0

is a chain complex.
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Groups of Homology

Homology of Simplicial Complex

The past theorem allows to define the following subspaces from
the vector space Cq(K ):

1 Zq(K ) = ker ∂q.

2 Bq(K ) = Img∂q+1.

Definition

The q simplicial homology group of K is define as
Hq(K ) = Zq(K )/Bq(K ) with coefficients in Fp.



Introduction to Sliding Windows Basic Topological Concepts Approximating SWM,τ f (t) Empiric Exercise Appendix

Persistence

Outline

1 Introduction to Sliding Windows
Definition
Example

2 Basic Topological Concepts
Simplicial Complex
Groups of Homology
Persistence
Topological properties of the data

3 Approximating SWM,τ f (t)
Convergence of φ(t)
Geometric Structure of the embedding

4 Empiric Exercise
Scoring
Effectiveness

5 Appendix



Introduction to Sliding Windows Basic Topological Concepts Approximating SWM,τ f (t) Empiric Exercise Appendix

Persistence

Birth and death of a homology class

Definition

Let K be a simplicial. A filtration of K is a nested sequence of
subcomplex of K that starts with the empty complex and ends
with K .

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Km = K

An homology class α is born at Ki if it is not in the image of
the map induced by the inclusion of Ki−1 in Ki .

An homology class α dies entering Kj if the image of the map
induced by Ki−1 ⊂ Kj does not contain the image of α but
the image of the map induced by Ki−1 ⊂ Kj−1 does.

The persistence of α is j − i .
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Persistence

Persistence diagrams

Definition

Let K be a simplicial complex and {Ki}mi=0 be a filtration of K .
Set k ∈ N. The k-dimensional persistence diagram is a multiset
from N2 where (i , j) ∈ dgm(k) if there exists an homology class
associate to the k−homology whose birth is at Ki and dies
entering Kj

To each persistence diagram we attach the diagonal
∆ = {(x , x)|x ≥ 0} with countably multiplicity.

The diagonal has no effect on the topological information
contain the the persistence diagram since it represents classes
that born and die in the same group.
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Persistence

Bottleneck distance

Definition

The bottleneck metric between two persistence diagrams is define
as

dB(dgm1(k), dgm2(k)) = inf
φ

sup
x∈dgm1(k)

‖x − φ(x)‖∞

where the infimum over all the bijections φ : dgm1(k) −→ dgm2(k)

φ always exists since the each diagram has the diagonal with
countable multiplicity.
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Topological properties of the data

Rips Complex

Definition

Let S be a point cloud in Rn and fix ε > 0. Define the Rips
complex of S as the simplicial comples R(S , ε) with vertex set S
and the simplex ∆({s1, ..., sk}) ∈ Σ if and only if
∀si , sj ∈ {s1, ..., sk} they satisfy ‖si − sj‖ < ε.

Since R(S , ε1) ⊆ R(S , ε2) whenever ε1 ≤ ε2 then a filtration
of the full complex is induced through the Rips complex.

For small distances the simplicial complex derived is
completely disconnected where each point is an individual
simplex.
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Topological properties of the data

Rips Complexes
Example

Figure: Construction of the Rips Complex for a fix ε
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Topological properties of the data

Rips Complexes
Example

Figure: Filtration derived from Rips Complex
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Topological properties of the data

Stability

Proposition

Let X and Y be two point clouds. The persistent diagrams
associated to each point cloud is stable. This means

db(dgm(X ), dgm(Y )) ≤ 2dH(X ,Y )

where dH denotes the Hausdorff distance define as:

dH(X ,Y ) = max{sup
x∈X

inf
y∈Y

d(x , y), sup
y∈Y

inf
x∈X

d(x , y)}
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Computational Cost

Studying the geometry of objects generated by SWM,τ f can
be difficult and computational expensive.

It is easier to study trigonometric polynomials and thus the
Fourier approximation of f .

In this section we show that SWM,τ behaves well under
Fourier approximation.

Moreover, this approximations work in the context of
persistent diagrams
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Fourier Approximation

The Fourier expansion of the Sliding Window of f

SWM,τ f (t) =
N∑

n=0

cos(nt)(anun + bnvn) + sin(nt)(bnun − anvn)

+ SWM,τRN f (t)

where un = SWM,τ cos(nt)
∣∣
t=0

, vn = SWM,τ sin(nt)
∣∣
t=0

, an and
bn are the coefficients of the Fourier expansion. To ease the
notation let

φ(t) =
N∑

n=0

cos(nt)(anun + bnvn) + sin(nt)(bnun − anvn)
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Convergence of φ(t)

SWM,τ as a linear operator

Theorem

∀M ∈ N and τ > 0, SWM,τ : C (T,R) −→ C (T,RM+1) is a linear
bounded operator and its bound is ‖SWM,τ‖ ≤

√
M + 1.

Proof
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Convergence of φ(t)

Uniform Convergence

Theorem

Fix k ∈ N. For f ∈ C k(T,R) then for each t ∈ T the following
inequality holds:

‖SWM,τ f (t)− φτ (t)‖RM+1 ≤
√

2(M + 1)

Nk−1/2
√

2k − 1

∥∥∥RN f
(k)
∥∥∥

2
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Convergence of φ(t)

Max. Persistence

Definition

Let (x , y) ∈ dmg, and define pers(x , y) = y − x . The max.
persistence of the diagram is

mp(dmg) = max
x∈dmg

pers(x , y)
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Convergence of φ(t)

Approximation Theorem

Theorem

Let T ⊆ T, f ∈ C k(T,R), X = SWM,τ f (T ) y Y = φ(T ). Then

1 dH(X ,Y ) ≤
√

2(M + 1)

Nk−1/2
√

2k − 1

∥∥RN f
(k)
∥∥

2

2

∣∣mp(dgm(X ))−mp(dgm(Y ))
∣∣ ≤ 2dB (dgm(X ), dgm(Y ))

3 dB (dgm(X ), dgm(Y )) ≤
2
√

2(M + 1)

Nk−1/2
√

2k − 1

∥∥RN f
(k)
∥∥

2
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Geometric Structure of the embedding

Construction of the Window

So far we have studied the topological properties of the
window and the Fourier approximation.

How to choose M and τ?

Trade off for M:
1 M + 1 is the detail of the function. Higher values of M yields

better results.
2 Computational expensive.

Trigonometric polynomials: no information is lost whenever
the dimension of the embedding is greater than twice the
maximum frequency.

SN f can be recovered from SWM,τ f if u0, u1, v1, ..., uN , vN are
linearly independent.
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Geometric Structure of the embedding

No loss of Information

Proposition

Fix Mτ < 2π. Then uo , u1, v1, ..., uN , vN are linearly independent
M ≥ 2N.

Assumption: From now on, given n ∈ N, set M = 2N and choose
τ > 0 so that Mτ < 2π.
Fundamental relation between window size, 1D persistence, and
underlying frequency: the maximum persistence of the
sliding-window point cloud from SN f is largest when the window
size Mτ is proportional to the underlying frequency.
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Geometric Structure of the embedding

Fourier Coefficients

Proposition

Foreach n ≥ 1, 〈un, vn〉 = ‖un‖2 − ‖vn‖2 = 0 if and only if

n(M + 1)τ ≡ 0 (modπ).

The last proposition implies also that anun + bnvn is orthogonal to
bnun − anvn for any an, bn ∈ R

Proposition

Let f be an L-periodic function and assume that L(M + 1)τ = 2π.
Then the set of vector

{un, vn|0 ≤ n ≤ N, n ≡ 0 (mod L)}

is orthogonal and has norm ‖un‖ = ‖vn‖ =
√

M+1
2 para n ≡L 0.
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Geometric Structure of the embedding

Centering Theorem

Theorem

Let C : RM+1 −→ RM+1 be the centering function. If f an
L-periodic function, L(M + 1)τ = 2π then:

1 φτ = f̂ (0)1 + C (φτ (t))

2 There is an orthogonal set of vectors{
x̃n, ỹn ∈ RM+1

∣∣ 1 ≤ n ≤ N n ≡ 0(mod L)
}

such that

ϕτ (t) =
C (φτ (t))

‖C (φτ (t))‖
=

N∑
n=1

n≡0 (modL)

r̃n(cos(nt)x̃n + sin(nt)ỹn)

where r̃n =
2
∣∣∣f̂ (n)

∣∣∣√
‖SN f ‖2

2 − f̂ (0)2
.
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Scoring

Lower Bound

Theorem

Let f ∈ C 1(T) be a L-periodic function satisfying f̂ (0 = 0) and ‖f ‖2 = 1.
Let T ⊆ T be a finite set such that dH(T ,T) < δ with

0 < δ <

√
3√

2‖f ′‖2

max
n∈N

∣∣∣f̂ (n)
∣∣∣

Then if H1 is a Q vectorial space, the 1D persistence diagram
dgm∞(f ,T ,w) satisfies

1

2
mp (dgm∞(f ,T ,w)) ≥

√
3 max

n∈N

∣∣∣f̂ (n)
∣∣∣−√2δ‖f ′‖2

and thus
mp (dgm∞(f ,w)) ≥ 2

√
3 max

n∈N

∣∣∣f̂ (n)
∣∣∣
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Scoring

Scoring

1 Let S = [s1, s2, ..., sJ ] be a sampled signal.

2 Estimate fS using a cubic spline interpolation.

3 Construct XS the point cloud from the center and normalized
sliding window.

4 Define its periodicity score as

Score(S) =
mp(dmg(XS))√

3
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Effectiveness
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Effectiveness

Time Series

Figure: Profiles with three Gaussian noise levels.
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Effectiveness

ROC Curves
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Effectiveness

Thank You
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Proof
Bounded Linear Operator

Linearity is trivial. It is left to show that it is bounded. Let
f ∈ L2(T) and consider the norm of RM+1 for t ∈ T fix. Then:

‖SWM,τ f (t)‖2
RM+1 =

M∑
n=0

|f (t + nτ)|2

≤
M∑
n=0

sup
t∈T
|f (t)|2

=
M∑
n=0

‖f ‖2

= (M + 1)‖f ‖2
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