Basic Topological Concepts

Approximating $SW_{M,\tau}f(t)$

Empiric Exercise / 0000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Appendix

Aplicaciones de ventanas deslizantes a periodicidad de funciones

José Miguel Quintero

November 29, 2018

Basic Topological Concepts

Approximating $SW_{M,\tau}f(t)$

Empiric Exercise Appendix

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Motivation

- The study of signals is very relevant in time series analysis:
 Early detection of diseases.
- Today: Study a method to detect periodicity and quasi-periodicity in time series signals.
- What's new? The method combines computational topology with time series analysis.

Introduction	Sliding	Windows

Basic Topological Concepts

Approximating $SW_{M,\tau}f(t)$

Empiric Exercise /

Appendix

Outline

- Introduction to Sliding Windows
 - Definition
 - Example
- 2 Basic Topological Concepts
 - Simplicial Complex
 - Groups of Homology
 - Persistence
 - Topological properties of the data
- 3 Approximating $SW_{M,\tau}f(t)$
 - Convergence of \(\phi(t)\)
 - Geometric Structure of the embedding
- 4 Empiric Exercise
 - Scoring
 - Effectiveness
- 5 Appendix

Introduction to Sliding Windows	Basic Topological Concepts	Approximating $SW_{M,\tau}f(t)$ 000000000	Empiric Exercise 0000000	Appendix
Definition				
Outline				

Introduction to Sliding Windows

- Definition
- Example

2 Basic Topological Concepts

- Simplicial Complex
- Groups of Homology
- Persistence
- Topological properties of the data
- 3 Approximating $SW_{M,\tau}f(t)$
 - Convergence of $\phi(t)$
 - Geometric Structure of the embedding
- 4 Empiric Exercise
 - Scoring
 - Effectiveness
- 5 Appendix

Basic Topological Concepts

Approximating $SW_{M,\tau}f(t)$

Empiric Exercise Appendix

Definition

Sliding Windows

Definition

Let $f : \mathbb{R} \longrightarrow \mathbb{R}$, $M \in \mathbb{N}$ y $\tau \in \mathbb{R}$ such that $\tau > 0$. Define the window of f as a point in \mathbb{R}^{M+1} with base $t \in \mathbb{R}$ as

$$5W_{M, au}f(t) = egin{bmatrix} f(t)\ f(t+ au)\ dots\ f(t+ au)\ dots\ f(t+ au)\ dots\ f(t+ au)\ dots\ dots\$$

- The original time series $\{f(t)\}_t$ defines a point-cloud in \mathbb{R}^{M+1} .
- $M\tau$ is a parameter define as the window size.

Introduction to Sliding Windows	Basic Topological Concepts	Approximating $SW_{M,\tau}f(t)$ 000000000	Empiric Exercise 0000000	Appendix
Example				
A 11				

Outline

Introduction to Sliding Windows

Definition

Example

- 2 Basic Topological Concepts
 - Simplicial Complex
 - Groups of Homology
 - Persistence
 - Topological properties of the data
- 3 Approximating $SW_{M,\tau}f(t)$
 - Convergence of $\phi(t)$
 - Geometric Structure of the embedding
- 4 Empiric Exercise
 - Scoring
 - Effectiveness
- 5 Appendix

Introduction to Sliding Windows	Basic Topological Concepts	Approximating $SW_{M,\tau}f(t)$ 0000000000	Empiric Exercise 0000000	Appendix
Example				
Baseline exampl $cos(t)$	е			

Let $f(t) = \cos(t)$. The the Sliding Windows of f with parameters M and τ is

$$SW_{M,\tau}f(t) = \begin{bmatrix} \cos(t) \\ \cos(t+\tau) \\ \vdots \\ \cos(t+M\tau) \end{bmatrix} = \cos(t) \begin{bmatrix} 1 \\ \cos(\tau) \\ \vdots \\ \cos(M\tau) \end{bmatrix} -\sin(t) \begin{bmatrix} 0 \\ \sin(\tau) \\ \vdots \\ \sin(M\tau) \end{bmatrix}$$

Define $u = [1, \cos(\tau), \cdots, \cos(M\tau)]$ and $v = [0, \sin(\tau), \cdots, \sin(M\tau)]$. Thus, the window can be rewritten as

$$SW_{M,\tau}f(t) = \cos(t)u - \sin(t)v.$$

If u and v are linearly independent, $SW_{M,\tau}f(t)$ is a planar curve in the vector space generated by u and v.

Introduction to Sliding Windows $\circ \circ \circ \circ \circ \circ \circ$

Basic Topological Concepts

Approximating $SW_{M,\tau}f(t)$

Empiric Exercise

Example

Baseline example

Figure: Panel to the left is plotted $f(t) = \cos(t)$ in the interval $[0, 2\pi]$. Panel to the right has $SW_{M,\tau}f(t)$ taking M = 2 and $\tau = \frac{2\pi}{3}$

Introduction	to	Sliding	Windows
000000			

Basic Topological Concepts

Approximating $SW_{M,\tau}f(t)$ 000000000 Empiric Exercise

Appendix

Example

Takeaways

- The degree to which the image of SW_{M,τ}f traces a closed curve is a measure of how periodic the function is.
- The geometry of the curve can be quite complicated to study. Thus the necessity to study the geometry of similar objects.

Basic Topological Concepts

Approximating $SW_{M,\tau}f(t)$

Empiric Exercise A

Simplicial Complex

Outline

- Introduction to Sliding Windows
 - Definition
 - Example
- 2 Basic Topological Concepts
 - Simplicial Complex
 - Groups of Homology
 - Persistence
 - Topological properties of the data
- 3 Approximating $SW_{M,\tau}f(t)$
 - Convergence of $\phi(t)$
 - Geometric Structure of the embedding
- 4 Empiric Exercise
 - Scoring
 - Effectiveness
- 5 Appendix

Basic Topological Concepts

Approximating $SW_{M,\tau}f(t)$

Empiric Exercise A

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Simplicial Complex

Simplex I

Definition

Let $P = \{p_0, p_1, ..., p_m\}$ a set of points in \mathbb{R}^n . The simplex generated by P is define as

$$\Delta(\mathcal{P}) = \left\{ \sum_{j=0}^n t_j \mathcal{P}_j \Big| \hspace{0.1cm} t_j \geq 0, \hspace{0.1cm} \sum_{j=0}^n t_j = 1
ight\}.$$

Moreover, given a simplex $\Delta(P)$, for any $p_i \in P$, the opposite face of p_i is $\Delta(P \setminus \{p_i\})$.

Introduction to Sliding Windows	Basic Topological Concepts	Approximating $SW_{M,\tau}f(t)$ 0000000000	Empiric Exercise	Appendix
Simplicial Complex				
Simplex II				

Given $P = \{p_0, p_1, p_2, p_3\}$, the 3 simplex is the following

-

And the opposite face of p_3 is the triangle generated by $\{p_1, p_2, p_3\}$. A face is always a Simplex.

Basic Topological Concepts

Approximating $SW_{M,\tau}f(t)$ 000000000 Empiric Exercise A

Appendix

Simplicial Complex

Simplicial Complex Definition

Definition

A simplicial complex in \mathbb{R}^n is an ordered pair $K = (V, \Sigma)$ where V is a set of points in \mathbb{R}^n and Σ is a collection of simplex satisfying:

2 Σ is closed under face relation.

If s, b ∈ Σ then s ∩ b ∈ Σ or is empty. s ∩ b is define as the common face between s and b.

Moreover, the dimension of K is define as

$$\dim(\mathcal{K}) = \sup_{s \in \Sigma} \dim(s)$$

Basic Topological Concepts

Approximating $SW_{M,\tau}f(t)$

Empiric Exercise A

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Simplicial Complex

Simplicial Complex Example

Figure: Simplicial Complex

Basic Topological Concepts

Approximating $SW_{M,\tau}f(t)$

Empiric Exercise 0000000

Appendix

Simplicial Complex

Homology of Simplicial Complex

Definition

Let K be a simplicial complex and p a prime number. Let \mathbb{F}_p be the finite field with p elements. Define $C_q(K)$ as the vector space generated by the q-dimensional simplices of K. Moreover, if $c \in C_q(K)$ then c can be expressed as

$$c = \sum_{\substack{s \in \Sigma \ q = \dim(s)}} \gamma_s s$$

where $\gamma_s \in \mathbb{F}_p$ for all $s \in \Sigma$ such that dim(s) = q.

Introduction to Sliding Windows $_{\rm OOOOOO}$

Basic Topological Concepts

Approximating $SW_{M,\tau}f(t)$

Empiric Exercise A

Appendix

Groups of Homology

Outline

- Introduction to Sliding Windows
 - Definition
 - Example
- 2 Basic Topological Concepts
 - Simplicial Complex
 - Groups of Homology
 - Persistence
 - Topological properties of the data
- 3 Approximating $SW_{M,\tau}f(t)$
 - Convergence of $\phi(t)$
 - Geometric Structure of the embedding
- 4 Empiric Exercise
 - Scoring
 - Effectiveness
- 5 Appendix

Basic Topological Concepts

Approximating $SW_{M,\tau}f(t)$

Empiric Exercise

Appendix

Groups of Homology

Homology of Simplicial Complex

Definition

Let K be a simplicial complex and define $\partial_q : C_q(K) \longrightarrow C_{q-1}(K)$ as

$$\partial_q([p_0,...,p_q]) = \sum_{i=0}^{7} (-1)^i [p_0,...,\hat{p}_i,...,p_q]$$

Theorem

Let K be a simplicial complex of dimension n. Then

$$0 \xrightarrow{\partial} C_n(K) \xrightarrow{\partial} C_{n-1}(K) \xrightarrow{\partial} \cdots \xrightarrow{\partial} C_1(K) \xrightarrow{\partial} C_0(K) \xrightarrow{\partial} 0$$

is a chain complex.

Basic Topological Concepts

Approximating $SW_{M,\tau}f(t)$

Empiric Exercise Appendix

Groups of Homology

Homology of Simplicial Complex

The past theorem allows to define the following subspaces from the vector space $C_q(K)$:

$$I Z_q(K) = \ker \partial_q.$$

$$B_q(K) = Img\partial_{q+1}.$$

Definition

The *q* simplicial homology group of *K* is define as $H_q(K) = Z_q(K)/B_q(K)$ with coefficients in \mathbb{F}_p .

Basic Topological Concepts

Approximating $SW_{M,\tau}f(t)$

Empiric Exercise /

Appendix

Persistence

Outline

- Introduction to Sliding Windows
 - Definition
 - Example

2 Basic Topological Concepts

- Simplicial Complex
- Groups of Homology

Persistence

- Topological properties of the data
- 3 Approximating $SW_{M,\tau}f(t)$
 - Convergence of $\phi(t)$
 - Geometric Structure of the embedding
- 4 Empiric Exercise
 - Scoring
 - Effectiveness
- 5 Appendix

Basic Topological Concepts

Approximating $SW_{M,\tau}f(t)$

Empiric Exercise 0000000

Appendix

Persistence

Birth and death of a homology class

Definition

Let K be a simplicial. A filtration of K is a nested sequence of subcomplex of K that starts with the empty complex and ends with K.

$$\emptyset = K_0 \subseteq K_1 \subseteq \cdots \subseteq K_m = K$$

- An homology class α is born at K_i if it is not in the image of the map induced by the inclusion of K_{i-1} in K_i.
- An homology class α dies entering K_j if the image of the map induced by K_{i-1} ⊂ K_j does not contain the image of α but the image of the map induced by K_{i-1} ⊂ K_{j-1} does.
- The persistence of α is j i.

Basic Topological Concepts

Approximating $SW_{M,\tau}f(t)$ 000000000 Empiric Exercise 0000000

Appendix

Persistence

Persistence diagrams

Definition

Let K be a simplicial complex and $\{K_i\}_{i=0}^m$ be a filtration of K. Set $k \in \mathbb{N}$. The k-dimensional persistence diagram is a multiset from \mathbb{N}^2 where $(i, j) \in \operatorname{dgm}(k)$ if there exists an homology class associate to the k-homology whose birth is at K_i and dies entering K_j

- To each persistence diagram we attach the diagonal $\Delta = \{(x, x) | x \ge 0\}$ with countably multiplicity.
- The diagonal has no effect on the topological information contain the the persistence diagram since it represents classes that born and die in the same group.

Basic Topological Concepts

Approximating $SW_{M,\tau}f(t)$ 000000000 Empiric Exercise /

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Appendix

Persistence

Bottleneck distance

Definition

The bottleneck metric between two persistence diagrams is define as

$$d_B(\mathsf{dgm}_1(k),\mathsf{dgm}_2(k)) = \inf_{\phi} \sup_{x\in \mathsf{dgm}_1(k)} \|x-\phi(x)\|_\infty$$

where the infimum over all the bijections $\phi : \operatorname{dgm}_1(k) \longrightarrow \operatorname{dgm}_2(k)$

• ϕ always exists since the each diagram has the diagonal with countable multiplicity.

Introduction to Sliding Windows $_{\rm OOOOOO}$

Basic Topological Concepts

Approximating $SW_{M,\tau}f(t)$

Empiric Exercise A

Topological properties of the data

Outline

- Introduction to Sliding Windows
 - Definition
 - Example

2 Basic Topological Concepts

- Simplicial Complex
- Groups of Homology
- Persistence

Topological properties of the data

- 3 Approximating $SW_{M,\tau}f(t)$
 - Convergence of $\phi(t)$
 - Geometric Structure of the embedding
- 4 Empiric Exercise
 - Scoring
 - Effectiveness
- 5 Appendix

Basic Topological Concepts

Approximating $SW_{M,\tau}f(t)$

Empiric Exercise Appendix

Topological properties of the data

Rips Complex

Definition

Let S be a point cloud in \mathbb{R}^n and fix $\varepsilon > 0$. Define the Rips complex of S as the simplicial comples $R(S, \varepsilon)$ with vertex set S and the simplex $\Delta(\{s_1, ..., s_k\}) \in \Sigma$ if and only if $\forall s_i, s_j \in \{s_1, ..., s_k\}$ they satisfy $||s_i - s_j|| < \varepsilon$.

- Since R(S, ε₁) ⊆ R(S, ε₂) whenever ε₁ ≤ ε₂ then a filtration of the full complex is induced through the Rips complex.
- For small distances the simplicial complex derived is completely disconnected where each point is an individual simplex.

Basic Topological Concepts

Approximating $SW_{M,\tau}f(t)$

Empiric Exercise / 0000000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Topological properties of the data

Rips Complexes

Figure: Construction of the Rips Complex for a fix ϵ

Basic Topological Concepts

Approximating $SW_{M,\tau}f(t)$ 000000000 Empiric Exercise Ap ၁೦೦೦೦೦೦

Topological properties of the data

Rips Complexes

Figure: Filtration derived from Rips Complex

Basic Topological Concepts

Approximating $SW_{M,\tau}f(t)$

Empiric Exercise A

Appendix

Topological properties of the data

Stability

Proposition

Let X and Y be two point clouds. The persistent diagrams associated to each point cloud is stable. This means

 $d_b(\operatorname{dgm}(X),\operatorname{dgm}(Y)) \leq 2d_H(X,Y)$

where d_H denotes the Hausdorff distance define as:

$$d_{H}(X,Y) = \max\{\sup_{x \in X} \inf_{y \in Y} d(x,y), \sup_{y \in Y} \inf_{x \in X} d(x,y)\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Basic Topological Concepts

Approximating $SW_{M,\tau}f(t)$

Empiric Exercise Appendix

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Computational Cost

- Studying the geometry of objects generated by $SW_{M,\tau}f$ can be difficult and computational expensive.
- It is easier to study trigonometric polynomials and thus the Fourier approximation of *f*.
- In this section we show that $SW_{M,\tau}$ behaves well under Fourier approximation.
- Moreover, this approximations work in the context of persistent diagrams

Basic Topological Concepts

Approximating $SW_{M,\tau}f(t)$

Empiric Exercise

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Appendix

Fourier Approximation

The Fourier expansion of the Sliding Window of f

$$SW_{M,\tau}f(t) = \sum_{n=0}^{N} \cos(nt)(a_nu_n + b_nv_n) + \sin(nt)(b_nu_n - a_nv_n) + SW_{M,\tau}R_Nf(t)$$

where $u_n = SW_{M,\tau} \cos(nt)|_{t=0}$, $v_n = SW_{M,\tau} \sin(nt)|_{t=0}$, a_n and b_n are the coefficients of the Fourier expansion. To ease the notation let

$$\phi(t) = \sum_{n=0}^{N} \cos(nt)(a_nu_n + b_nv_n) + \sin(nt)(b_nu_n - a_nv_n)$$

Introduction to Sliding Windows	Basic Topological Concepts	Approximating $SW_{M,\tau}f(t)$ $\bullet 000000000$	Empiric Exercise 0000000	Appendix
Convergence of $\phi(t)$				
Outline				

Introduction to Sliding Windows

- Definition
- Example
- 2 Basic Topological Concepts
 - Simplicial Complex
 - Groups of Homology
 - Persistence
 - Topological properties of the data
- 3 Approximating $SW_{M,\tau}f(t)$
 - Convergence of \(\phi(t)\)
 - Geometric Structure of the embedding
- 4 Empiric Exercise
 - Scoring
 - Effectiveness
- 5 Appendix

Basic Topological Concepts

Approximating $SW_{M,\tau}f(t)$ 000000000

Empiric Exercise ၁೦೦೦೦೦೦

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Appendix

Convergence of $\phi(t)$

$SW_{M,\tau}$ as a linear operator

Theorem

 $\forall M \in \mathbb{N} \text{ and } \tau > 0, SW_{M,\tau} : C(\mathbb{T}, \mathbb{R}) \longrightarrow C(\mathbb{T}, \mathbb{R}^{M+1}) \text{ is a linear bounded operator and its bound is } \|SW_{M,\tau}\| \leq \sqrt{M+1}.$

Proof

Basic Topological Concepts

Approximating $SW_{M,\tau}f(t)$

Empiric Exercise

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Appendix

Convergence of $\phi(t)$

Uniform Convergence

Theorem

Fix $k \in \mathbb{N}$. For $f \in C^{k}(\mathbb{T}, \mathbb{R})$ then for each $t \in \mathbb{T}$ the following inequality holds:

$$\|SW_{M,\tau}f(t) - \phi_{\tau}(t)\|_{\mathbb{R}^{M+1}} \leq \frac{\sqrt{2(M+1)}}{N^{k-1/2}\sqrt{2k-1}} \|R_N f^{(k)}\|_2$$

Introduction to Sliding Windows	Basic Topological Concepts	Approximating $SW_{M,\tau}f(t)$ 000000000	Empiric Exercise 0000000	Appendix
Convergence of $\phi(t)$				
Max. Persistence	e			

Definition

Let $(x, y) \in \text{dmg}$, and define pers(x, y) = y - x. The max. persistence of the diagram is

$$mp(dmg) = \max_{x \in dmg} pers(x, y)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Basic Topological Concepts

Approximating $SW_{M,\tau}f(t)$ 000000000

Empiric Exercise 0000000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Convergence of $\phi(t)$

Approximation Theorem

Theorem

Let
$$T \subseteq \mathbb{T}$$
, $f \in C^{k}(\mathbb{T}, \mathbb{R})$, $X = SW_{M,\tau}f(T)$ y $Y = \phi(T)$. Then
• $d_{H}(X, Y) \leq \frac{\sqrt{2(M+1)}}{N^{k-1/2}\sqrt{2k-1}} ||R_{N}f^{(k)}||_{2}$
• $|mp(dgm(X)) - mp(dgm(Y))| \leq 2d_{B}(dgm(X), dgm(Y))$
• $d_{B}(dgm(X), dgm(Y)) \leq \frac{2\sqrt{2(M+1)}}{N^{k-1/2}\sqrt{2k-1}} ||R_{N}f^{(k)}||_{2}$

Basic Topological Concepts

Approximating $SW_{M,\tau}f(t)$

Empiric Exercise 0000000

Geometric Structure of the embedding

Outline

- Introduction to Sliding Windows
 - Definition
 - Example
- 2 Basic Topological Concepts
 - Simplicial Complex
 - Groups of Homology
 - Persistence
 - Topological properties of the data
- 3 Approximating $SW_{M,\tau}f(t)$
 - Convergence of $\phi(t)$
 - Geometric Structure of the embedding
- 4 Empiric Exercise
 - Scoring
 - Effectiveness
- 5 Appendix

Basic Topological Concepts

Approximating $SW_{M,\tau}f(t)$

Empiric Exercise Appendix

0000000000

Geometric Structure of the embedding

Construction of the Window

- So far we have studied the topological properties of the window and the Fourier approximation.
- How to choose M and τ ?
- Trade off for M:
 - M + 1 is the detail of the function. Higher values of M yields better results.
 - Computational expensive.
- Trigonometric polynomials: no information is lost whenever the dimension of the embedding is greater than twice the maximum frequency.
 - $S_N f$ can be recovered from $SW_{M,\tau}f$ if $u_0, u_1, v_1, ..., u_N, v_N$ are linearly independent.

Basic Topological Concepts

Approximating $SW_{M,\tau}f(t)$

Empiric Exercise Appendix

Geometric Structure of the embedding

No loss of Information

Proposition

Fix $M\tau < 2\pi$. Then $u_o, u_1, v_1, ..., u_N, v_N$ are linearly independent $M \ge 2N$.

Assumption: From now on, given $n \in \mathbb{N}$, set M = 2N and choose $\tau > 0$ so that $M\tau < 2\pi$.

Fundamental relation between window size, 1D persistence, and underlying frequency: the maximum persistence of the sliding-window point cloud from $S_N f$ is largest when the window size $M\tau$ is proportional to the underlying frequency.

Basic Topological Concepts

Approximating $SW_{M,\tau}f(t)$

Empiric Exercise A

Appendix

Geometric Structure of the embedding

Fourier Coefficients

Proposition

Foreach
$$n\geq 1$$
, $\langle u_n,v_n
angle=\|u_n\|^2-\|v_n\|^2=0$ if and only if

$$n(M+1)\tau \equiv 0 \pmod{\pi}.$$

The last proposition implies also that $a_nu_n + b_nv_n$ is orthogonal to $b_nu_n - a_nv_n$ for any $a_n, b_n \in \mathbb{R}$

Proposition

Let f be an L-periodic function and assume that $L(M + 1)\tau = 2\pi$. Then the set of vector

$$\{u_n, v_n | 0 \le n \le N, n \equiv 0 \pmod{L}\}$$

is orthogonal and has norm $||u_n|| = ||v_n|| = \sqrt{\frac{M+1}{2}}$ para $n \equiv_L 0$.

Basic Topological Concepts

Approximating $SW_{M,\tau}f(t)$

Empiric Exercise / 0000000

Appendix

Geometric Structure of the embedding

Centering Theorem

Theorem

Let $C : \mathbb{R}^{M+1} \longrightarrow \mathbb{R}^{M+1}$ be the centering function. If f an *L*-periodic function, $L(M+1)\tau = 2\pi$ then:

② There is an orthogonal set of vectors $\{\tilde{x}_n, \tilde{y}_n \in \mathbb{R}^{M+1} \mid 1 \le n \le N \ n \equiv 0 \pmod{L}\}$ such that

$$\varphi_{\tau}(t) = \frac{C(\phi_{\tau}(t))}{\|C(\phi_{\tau}(t))\|} = \sum_{\substack{n=1\\n\equiv 0 \pmod{L}}}^{N} \tilde{r}_n(\cos(nt)\tilde{x}_n + \sin(nt)\tilde{y}_n)$$

where
$$\tilde{r}_n = rac{2\left|\hat{f}(n)
ight|}{\sqrt{\|S_N f\|_2^2 - \hat{f}(0)^2}}$$

Introduction	Sliding	Windows

Basic Topological Concepts

Approximating $SW_{M,\tau}f(t)$

Empiric Exercise

Appendix

Scoring

Outline

- Introduction to Sliding Windows
 - Definition
 - Example
- 2 Basic Topological Concepts
 - Simplicial Complex
 - Groups of Homology
 - Persistence
 - Topological properties of the data
- 3 Approximating $SW_{M,\tau}f(t)$
 - Convergence of $\phi(t)$
 - Geometric Structure of the embedding
- 4 Empiric Exercise
 - Scoring
 - Effectiveness
- 5 Appendix

Introduction to Sliding Windows	Basic Topological Concepts	Approximating $SW_{M,\tau}f(t)$ 0000000000	Empiric Exercise	Appendix
Scoring				

Theorem

Lower Bound

Let $f \in C^1(\mathbb{T})$ be a L-periodic function satisfying $\hat{f}(0 = 0)$ and $||f||_2 = 1$. Let $T \subseteq \mathbb{T}$ be a finite set such that $d_H(T, \mathbb{T}) < \delta$ with

$$0 < \delta < \frac{\sqrt{3}}{\sqrt{2} \|f'\|_2} \max_{n \in \mathbb{N}} \left| \hat{f}(n) \right|$$

Then if H_1 is a \mathbb{Q} vectorial space, the 1D persistence diagram $\deg_{\infty}(f, T, w)$ satisfies

$$rac{1}{2} \textit{mp}\left(\mathsf{dgm}_{\infty}(f, T, w)
ight) \geq \sqrt{3} \max_{n \in \mathbb{N}} \left| \widehat{f}(n)
ight| - \sqrt{2} \delta \| f' \|_2$$

and thus

$$mp(dgm_{\infty}(f,w)) \geq 2\sqrt{3} \max_{n \in \mathbb{N}} \left| \hat{f}(n) \right|$$

Introduction to Sliding Windows	Basic Topological Concepts	Approximating $SW_{M,\tau}f(t)$ 000000000	Empiric Exercise	Appendix
Scoring				
Scoring				

- Let $S = [s_1, s_2, ..., s_J]$ be a sampled signal.
- **2** Estimate f_S using a cubic spline interpolation.
- Solution Construct X_S the point cloud from the center and normalized sliding window.
- Optime its periodicity score as

$$\mathsf{Score}(S) = \frac{mp(\mathsf{dmg}(X_S))}{\sqrt{3}}$$

Introduction to Sliding Windows	Basic Topological Concepts	Approximating $SW_{M,\tau}f(t)$ 000000000	Empiric Exercise	Appendix
Effectiveness				

Outline

- Introduction to Sliding Windows
 - Definition
 - Example
- 2 Basic Topological Concepts
 - Simplicial Complex
 - Groups of Homology
 - Persistence
 - Topological properties of the data
- 3 Approximating $SW_{M,\tau}f(t)$
 - Convergence of $\phi(t)$
 - Geometric Structure of the embedding
- 4 Empiric Exercise
 - Scoring
 - Effectiveness
- 5 Appendix

Basic Topological Concepts

Approximating $SW_{M,\tau}f(t)$

Empiric Exercise

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Effectiveness

Time Series

Figure: Profiles with three Gaussian noise levels.

Basic Topological Concepts

Approximating $SW_{M,\tau}f(t)$

Empiric Exercise 00000●0 Appendix

Effectiveness

ROC Curves

	000000000000000000000000000000000000000	000000000	0000000	
Introduction to Sliding Windows	Basic Topological Concepts	Approximating $SW_{M,\tau}f(t)$	Empiric Exercise	A

Thank You

Introduction to Sliding Windows	Basic Topological Concepts	Approximating $SW_{M,\tau}f(t)$	Empiric Exercise	Appendix
Proof				

Linearity is trivial. It is left to show that it is bounded. Let $f \in L^2(\mathbb{T})$ and consider the norm of \mathbb{R}^{M+1} for $t \in \mathbb{T}$ fix. Then:

$$\begin{split} \|SW_{M,\tau}f(t)\|_{\mathbb{R}^{M+1}}^2 &= \sum_{n=0}^M |f(t+n\tau)|^2 \\ &\leq \sum_{n=0}^M \sup_{t\in\mathbb{T}} |f(t)|^2 \\ &= \sum_{n=0}^M \|f\|^2 \\ &= (M+1)\|f\|^2 \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Return