

Principled training of Generative Adversarial Networks with Wasserstein Metric and Gradient Penalty

Autor: Gabriel Alfonso Patrón Herrera

Universidad Nacional de Colombia

Facultad de Ciencias Departamento de Estadística

Table of contents

- 1. Introduction
- 2. Generative Adversarial Networks

Framework

Problems Training GANs

Improved GAN Training

Wasserstein GAN

Evaluation Measures

- 3. Experiments
- 4. Applications

MNIST

CARS196

- 5. Additional Remarks
- 6. Conclusion

Introduction

Generative models are defined as algorithms that model data distributions $p(\mathbf{x})$.

- 1. There is a data set of observations **x**.
- 2. The observations are assumed to have been generated by some unknown distribution p_r .
- 3. The generative model p_g tries to learn p_r . If successful, p_g can be used to generate observations that appear to have been drawn from p_r .
- 4. A proper generative model should:
 - 4.1 Generate examples that could plausibly have been drawn from p_r .
 - 4.2 Generate examples different from the original observations **x**.

Generative Models Tree

Generative models are defined as algorithms that model data distributions $p(\mathbf{x})$.

Figure 1: Caption

Generative Adversarial Networks

Two deep neural networks compete with each other. The Generator, *G* tries to output fake data that seems as real as possible while the Discriminator, *D*, tries to correctly classify real data as real and fake data (provided by *G*) as fake.

- We have P_{data}
- \cdot Z is latent dimension
- We define $G: Z \rightarrow X$, where X is the domain of P_{data}
- We define $D: X \to [0, 1]$
- G and D compete. P_{g^1} converges to P_{data} in the limit.

 $^{^{1}}P_{g}$ is the distribution induced by G

$\min_{G} \max_{D} E_{x \sim p_{r}(x)}[\log(D(x)] + E_{z \sim p_{z}(z)}[\log(1 - D(G(z)))]$ (1)

The Ideal

Figure 2: GAN Progression

Figure 3: GAN architecture

The Algorithm

Algorithm 1: GAN Algorithm

Require: The number of steps to apply to the discriminator, *k*, is a hyperparameter. The number of samples in the minibatch, *m*.; for number of training iterations do

for k steps do

- Sample minibatch of *m* noise samples $z^{(1)}, z^{(1)}, ..., z^{(m)}$ from noise prior $p_g(z)$
- Sample minibatch of m examples $x^{(1)}, x^{(1)}, \dots, x^{(m)}$ from data generating distribution

• Update the discriminator by ascending its stochastic gradients:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{n=1}^m \log(D(x^i) + \log(1 - D(G(z^i))))$$

end

- Sample minibatch of m noise samples $z^{(1)}, z^{(1)}, ..., z^{(m)}$ from noise prior $p_g(z)$
- $\cdot\,$ Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{n=1}^m log(1 - D(G(z^i)))$$

end

The biggest problem facing GANs is the issue of non-convergence [15]. GANs have a number of common failures and all of these are active areas of research.

Two agents are trained to find a Nash Equilibrium to a two-player non-cooperative game, and as such, updating via gradient descent does not guarantee convergence due to the high-dimensional, non-convex nature of the cost function induced by the parameters The dimensions of real world data sets usually have their support on low dimensional manifolds. Intuitively, p_{data} and p_g have supports that rest in low dimensional manifolds and almost certainly are going to be disjoint. This phenomenon has the effect of making the distances between distributions work poorly because they have disjoint supports

Low Support Manifolds

Figure 4: Low Dimensional Supports. In high dimensional spaces, the support of the real distribution P_r and the generated distribution P_g are often disjoint, as observed on the left, or negligible (intersection has measure 0), as on the right. Image source [17]

 p_{data} and p_g have supports that rest in low dimensional manifolds and almost certainly are going to be disjoint and therefore we are always capable of finding a so-called *Perfect Discriminator*². A perfect Discriminator produces vanishing gradients, as shown in

²A perfect discriminator is a discriminator that separates real and fake samples correctly every time.

Low Support Manifolds

Figure 5: Various gradients that correspond to GAN and WGAN losses. It should be noted that an almost zero gradient is obtained via regular GAN methods, as illustrated by a red line. A linear (constant, non-zero, gradient) is obtained with WGAN methods, as described by the teal line. Image source: [2]

The generator's task is successfully completed whenever it can trick the discriminator into classifying fake samples as real. Such a task *does not imply generalization*. The generator can perform very well even when it is stuck in small spaces with very low variety, as seen in Figure 6.

Mode Collapse

Figure 6: An instance of Mode Collapse, the Generator gets stuck in the lowest blobs of the mixture, unable to reproduce the data from the upper blobs. In this situation, it can still fool the discriminator as long as it closely reproduces the data in these three blobs.

Gradient descent methods depend on a series of discernible objective functions that work for a predefined task. Either a *Regression* or *Classification* model's performance can usually be tracked.

How to "objectively" measure a generative model's output? How can we compare them?

• Use Strided Convolutions.

- Use Strided Convolutions.
- Remove fully-connected layers.

- Use Strided Convolutions.
- Remove fully-connected layers.
- Use batch Normalization.

- Use Strided Convolutions.
- Remove fully-connected layers.
- Use batch Normalization.
- Use ReLu, Leaky ReLu, and Tanh.

- Use Strided Convolutions.
- Remove fully-connected layers.
- Use batch Normalization.
- Use ReLu, Leaky ReLu, and Tanh.
- Use Adam Optimization.

- Use Strided Convolutions.
- Remove fully-connected layers.
- Use batch Normalization.
- Use ReLu, Leaky ReLu, and Tanh.
- Use Adam Optimization.
- Train with labels.

- Use Strided Convolutions.
- Remove fully-connected layers.
- Use batch Normalization.
- Use ReLu, Leaky ReLu, and Tanh.
- Use Adam Optimization.
- Train with labels.
- Balance G and D.

• Add noise to Discriminator Input.

- Add noise to Discriminator Input.
- \cdot Use a weaker distance metric.

The original GAN *minimizes the JS divergence* (defined below) between the distribution of real and fake examples [7]

There are many ways to measure them:

• Total variation distance

$$\delta(P_r, P_g) = \sup_{A \in \Sigma} |P_r(A) - P_g(A)|$$
(2)

• Kullback-Leibler (KL) divergence

$$KL(P_r || P_g) = \int \log(\frac{P_r(x)}{P_g(x)}) P_r(x) d\mu(x)$$
(3)

Both P_r and P_g are assumed to be absolutely continuous with respect to the same measure μ defined on X. KL divergence is asymmetric and can have infinite values.

There are many ways to measure them:

• Jensen-Shannon (JS)

$$JS(P_r, P_g) = KL(P_r || P_m) + KL(P_g || P_m)$$
(4)

where P_m is the mixture $\frac{P_r+P_g}{2}$. This divergence is symmetrical.

• Eart-Mover or Wasserstein distance

$$W(P_r, P_g) = \inf_{\gamma \in \prod(P_r, P_g)} E_{(x, y) \sim \gamma}[\|x - y\|]$$
(5)

Where $\prod(P_r, P_g)$ denotes the set of all joint distributions $\gamma(x, y)$ whose marginals are respectively P_r and P_g . The Wasserstein distance is in itself an optimization problem representing the minimum cost of transporting mass to convert one distribution into another.

The most fundamental difference between them is their impact on the convergence of sequences of probability distributions. Wasserstein distance is weakest among these³. [2].

³The relative strength of an induced topology understood as how hard it is for sequences of probability distributions to converge.
Let $Z \sim \mathbb{U}[0, 1]$ the uniform distribution on the unit interval. Let P_0 be the distribution of $(0, Z) \in \mathbb{R}^2$, uniform on a straight vertical line passing through the origin. Let $g_{\theta}(z) = (\theta, z)$ with θ a single real parameter.

Figure 7: Parallel lines separated by a horizontal distance θ .

$$W(P_0, P_\theta) = |\theta| \qquad \qquad KL(P_0, P_\theta) = \begin{cases} +\infty, & \text{if } \theta \neq 0\\ 0, & \text{if } \theta = 0 \end{cases}$$
$$US(P_0, P_\theta) = \begin{cases} \log(2), & \text{if } \theta \neq 0\\ 0, & \text{if } \theta = 0 \end{cases} \qquad \qquad \delta(P_0, P_\theta) = \begin{cases} 1, & \text{if } \theta \neq 0\\ 0, & \text{if } \theta = 0 \end{cases}$$

Distances

Figure 8: From left to right, distance as measured by Wasserstein and Jensen-Shannon divergence between the distributions in **Example 1**. Image source: [2]

This result holds not only when distributions have disjoint supports but also, more generally, when their intersection is contained in a set of measure zero, which is almost always the case when two low dimensional manifolds intersect [1]. Wasserstein distance between the distribution of real and fake examples is continuous everywhere and differentiable almost everywhere [2] and thus provides a reliable linear gradient that guarantees constant updates to the generator's parameters.

Direct application of Wasserstein distance definition poses a highly intractable optimization problem.

The Kantorovich-Rubinstein duality, which tells us that:

$$W(P_r, P_g) = \sup_{\|f\|_L \le 1} E_{\mathbf{x} \sim P_r}[f(\mathbf{x})] - E_{\mathbf{z} \sim P_z}[f_w(g_\theta(\mathbf{z})))]$$
(6)

where f belongs to the 1-Lipschitz set of functions such that $f: X \to \mathbf{R}$.

If *f* belongs to the class of K-Lipschitz functions, then the expression above corresponds to the Wasserstein distance multiplied by *K* [2].

Theorem (Existence of f)

Let P_r be any distribution. Let P_{θ} be the distribution of $g_{\theta}(Z)$ with Z being a random variable with density p and g_{θ} a function satisfying Assumption 1⁴.

Then, there is a solution $f: X \to \mathbb{R}$ to the problem

$$\max_{\|f\|_{L}\leq 1} E_{x\sim P_{r}}[f(x)] - E_{x\sim P_{\theta}}[f(x))]$$

and we have

$$\nabla_{\theta} W(P_r, P_g) = -\mathbb{E}_{z \sim p(z)} [\nabla_{\theta} f(g_{\theta}(z))]$$

when both terms are well-defined.

⁴See Appendix

• *f*⁵, parametrized by *w*, that solves this problem has its weights lying on a compact space.

⁵At this point, the name is changed from Discriminator to Critic

- *f*⁵, parametrized by *w*, that solves this problem has its weights lying on a compact space.
- Compactness enforces the *K*-Lipschitz condition f_w for every $w \in W$ for some *K* that depends only on *W* and the Critic's capacity [2].

⁵At this point, the name is changed from Discriminator to Critic

Weight Clipping⁶

⁶Element-wise values to a range of values determined and therefore making all parameters be inside the [-c, c] interval.

• The change in objective function:

$$\min_{G} \max_{\|f\|_{L} \leq 1} E_{\mathbf{x} \sim P_{r}}[f(\mathbf{x})] - E_{\mathbf{z} \sim P_{z}}[f_{w}(G_{\theta}(\mathbf{z})))]$$

• The change in objective function:

$$\min_{G} \max_{\|f\|_{L} \leq 1} E_{\mathbf{x} \sim P_{r}}[f(\mathbf{x})] - E_{\mathbf{z} \sim P_{z}}[f_{w}(G_{\theta}(\mathbf{z})))]$$

• The clipping determined by hyperparameter c.

Figure 9: Wasserstein GAN architecture

Several improvements are reported with respect to traditional GAN [2]:

Improved stability

Several improvements are reported with respect to traditional GAN [2]:

- Improved stability
- Less mode collapse

Several improvements are reported with respect to traditional GAN [2]:

- Improved stability
- Less mode collapse
- Discriminator's Loss correlated with Image Quality

'Weight clipping is clearly a terrible way of enforcing compactness' [2]

Enforce Gradient Penalty based on the following results [8]

Theorem (WGAN Gradient's Property)

Let P_r and P_g be any two distributions in X, a compact space. Then there is a 1-Lipschitz function f^* which is the optimal solution of the expression $\max_{\|f\|_{L} \leq 1} E_{y \sim P_r}[f(y)] - E_{x \sim P_\theta}[f(x)]$. Let π be the optimal coupling between P_r and P_q , the minimizer of

$$W(P_r, P_g) = \inf_{\pi \in \prod (P_r, P_g)} E_{(x,y) \sim \gamma}[\|x - y\|],$$

where $\prod (P_r, P_g)$ is the set of joint distributions $\pi(x, y)$. If f^* is differentiable and $\pi(x = y) = 0$, then it holds that $P_{(x,y)\sim\pi}[\nabla f^*(x_t) = \frac{y-x_t}{\|y-x_t\|}] = 1$ where $x_t = tx + (1-t)y$ with $0 \le t \le 1$.

Corollary f^* has gradient norm 1 almost everywhere under Pr and Pg.

The new Critic Loss the becomes:

$$L_{D} = E_{x}[D(\mathbf{x})] - E[D(G(\mathbf{z}))] + \gamma(||\nabla_{\hat{\mathbf{x}}}D(\hat{\mathbf{x}})|| - 1)^{2}$$
(7)

where the sampling distribution $P_{\hat{x}}$ samples uniformly along straight lines between pairs of points from P_r and P_g :

$$\hat{\mathbf{x}} = \epsilon \mathbf{x} + (1 - \epsilon) G(\mathbf{z})$$
 (8)

• The optimal WGAN critic has unit gradient norm almost everywhere under the real and generated data distributions

- The optimal WGAN critic has unit gradient norm almost everywhere under the real and generated data distributions
- Constrain the critic's gradient norm.

WGAN vs. WGAN-GP

Figure 10: Top row: Wasserstein GAN's learned value surfaces trained to optimality in several toy datasets. Bottom row: Wasserstein GAN with Gradient Penalty value surfaces trained on the same toy datasets. Image source: [8]

The WGAN-GP Algorithm

Algorithm 2: WGAN-GP Algorithm

Require:The gradient penalty coefficient λ , the number of critic iterations per generator iteration n_{critic} , the batch size m, Adam hyperparameters α , β_1 , β_2 ; **Require:** w_0 , initial critic parameters. θ_0 , initial generator's parameters; while θ has not converged do

```
for t = 0, \ldots, n_{critic} do
             for i = 1, \cdot, m do
                         • Sample real data \mathbf{x} \sim P_r
                         • Sample latent variable z \sim p(z)
                         • Sample a random number \epsilon \sim U[0, 1]
                        \cdot \mathbf{x} \leftarrow G_{\theta}(z)
                        \cdot \mathbf{x} \leftarrow \epsilon \mathbf{x} + (1 - \epsilon) \mathbf{x}
                         • L^{(i)} \leftarrow D_w(\tilde{\mathbf{X}}) - D_w(\mathbf{x}) + \lambda (||\nabla_{\mathbf{x}} D_w(\mathbf{x})||_2 - 1)^2
             end
             w \leftarrow Adam(\nabla_w \frac{1}{m} \sum_{i=1}^m L^{(i)}, w, \alpha, \beta_1, \beta_2)
      end
            • Sample a batch of latent variables \{z^{(i)}\}_{i=1}^m \sim p(z).
            \cdot \theta \leftarrow Adam(\nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} -D_{W}(G_{\theta}(\mathbf{z})), \theta, \alpha, \beta_{1}, \beta_{2})
end
```

Inception Score and Frechet Inception Distance both depend on InceptionV3 network. A pre-trained deep learning neural network model for image classification. 1. The images generated should contain clear objects, or p(y|x) should be low entropy. The Inception Network should be highly confident there is a meaningful object in the image.

- 1. The images generated should contain clear objects, or p(y|x) should be low entropy. The Inception Network should be highly confident there is a meaningful object in the image.
- 2. The generative model should output a high diversity of images from all the different classes in ImageNet, or p(y) should be high entropy.

The generator model should reliably output a high variety of high-quality meaningful objects.

The distance between the distributions (real and generated) is then calculated using the *Frechet Distance*⁷:

$$FID = \|\mu_r - \mu_g\|^2 + Tr(\Sigma_r + \Sigma_g - 2(\Sigma_r \Sigma_g)^{\frac{1}{2}})$$
(9)

where $X_r \sim \mathbb{N}(\mu_r, \Sigma_r)$ and $X_g \sim \mathbb{N}(\mu_g, \Sigma_g)$ are the 2048-dimensional activations of the Inception-v3 pool3 layer [9].

⁷Also known as Wasserstein-2 distance

Experiments

Figure 11: Toy Data used for this Section

Parabolas

Figure 12: Parabola distribution

Circle

Figure 13: Circle distribution
Mixture

Figure 14: Mixture distribution

Mixture

Figure 15: Random Blobs distribution

Circles

Figure 16: Circles distribution

Moons

Figure 17: Moons distribution

Spiral

Figure 18: Spiral distribution

S Curve

Figure 19: S curve distribution

Applications

Figure 20: A sample from MNIST

MNIST

Figure 21: MNIST progression for the same *z* sampled evey 5 epochs. Epochs 0 to 40 shown.

MNIST

Figure 22: MNIST progression for the same *z* sampled evey 5 epochs. Epochs 45 to 95 shown.

MNIST

Figure 23: MNIST progression for the same *z* sampled evey 5 epochs. Epochs 100 to 140 shown.

Figure 24: MNIST Sample results.

Figure 25: MNIST plots

Sample of CARS196

Suzuki SX4 Hatchback 2012 (182) Volkswagen Golf Hatchback 1991 (190)

Volvo XC90 SUV 2007 (194)

HUMMER H2 SUT Crew Cab 2009 (124)

Hyundai Santa Fe SUV 2012 (130)

Chevrolet Corvette ZR1 2012 (55)

Bentley Arnage Sedan 2009 (39)

Acura TL Sedan 2012 (2)

Figure 26: A sample from CARS196 [10]

Figure 27: Samples from CARS Generator. Fixed *z*, sampled every 50 epochs from 0 to 400.

Figure 28: Samples from CARS Generator. Fixed *z*, sampled every 50 epochs from 450 to 900.

CARS Results

Figure 29: Samples from CARS Generator.

Additional Remarks

Generalization properties of GANs are not well understood [16]. In [3], it is shown that training of GANs may not have good generalization properties, in contrast to what was suggested in the foundational paper [7], that is, GANs learn the distribution if the *deep nets* are sufficiently large. Theoretical analysis in [3] showed that the training objective can approach its optimum value even if the generated distribution suffers from *mode collapse*. There are many types of GANs and it is hard to classify them. They can be classified according to their objective (e.g. MuseGAN for music) and their architecture (e.g. SN-GAN [12]) or their type (e.g. Conditional GAN [11])

Medical Data Augmentation

Figure 31: Generated Models. Source: Zalando Research

Text to Image Synthesis

this small bird has a pink breast and crown, and black almost all black with a red primaries and secondaries.

the flower has petals that are bright pinkish purple with white stigma

this magnificent fellow is crest, and white cheek patch.

this white and yellow flower have thin white petals and a round yellow stamen

Figure 32: Text to image synthesis for flowers and birds. Source: [14]

Figure 33: 48 frames of generated watermelon video. Source: [5]

GAN research has been overwhelmingly focused on image generation, the state of the art, as of today, corresponds to Latent Optimization GAN [18], which applies the SN-GAN methodology with latent optimization. Previous SOTA was BigGAN [4], that used only SN-GAN and the biggest architecture to date. Conclusion

GAN's and their variants have proven to be a Generative model with very high potential and applicability. From data augmentation to media synthesis, this generative modeling framework is growing each day, improving and breaking new barriers. There are still some difficult challenges ahead but steady progress is being made towards solving these issues; although the GAN world can look messy and aimless, several **winning** ideas are starting to emerge.

Questions?

Let $g: Z \times \mathbb{R}^d \to X$ be locally Lipschitz between finite dimensional vector spaces and denote by $g_{\theta}(z)$ it's evaluation con coordinates (z,θ) . We say that g satisfies Assumption 1 For a certain probability distribution p over Z if there are local Lipschitz constants $L(\theta,z)$ such that:

 $\mathbb{E}_{z\sim p}[L(\theta, z)] + \infty.$

Model: "Discriminator"		
Layer (type)	Output Shape	Param #
dense_4 (Dense)	(None, 512)	1536
dense_5 (Dense)	(None, 512)	262656
dense_6 (Dense)	(None, 512)	262656
dense_7 (Dense)	(None, 1)	513
Total params: 527,361 Trainable params: 527,361 Non-trainable params: 0		

Figure 34: Experiments discriminator

Model: "Generator"		
Layer (type)	Output Shape	Param #
dense (Dense)	(None, 512)	1536
dense_1 (Dense)	(None, 512)	262656
dense_2 (Dense)	(None, 512)	262656
dense_3 (Dense)	(None, 2)	1026
Total params: 527,874 Trainable params: 527,874 Non-trainable params: 0		

Figure 35: Experiments Generator

Architectures - MNIST Critic

Model: "discriminator"

Layer (type)	Output Shape	Param #
input_7 (InputLayer)	[(None, 28, 28, 1)]	0
zero_padding2d_3 (ZeroPaddin	(None, 32, 32, 1)	0
conv2d_21 (Conv2D)	(None, 16, 16, 64)	1664
leaky_re_lu_21 (LeakyReLU)	(None, 16, 16, 64)	0
conv2d_22 (Conv2D)	(None, 8, 8, 128)	204928
leaky_re_lu_22 (LeakyReLU)	(None, 8, 8, 128)	0
dropout_9 (Dropout)	(None, 8, 8, 128)	0
conv2d_23 (Conv2D)	(None, 4, 4, 256)	819456
leaky_re_lu_23 (LeakyReLU)	(None, 4, 4, 256)	0
dropout_10 (Dropout)	(None, 4, 4, 256)	0
conv2d_24 (Conv2D)	(None, 2, 2, 512)	3277312
<pre>leaky_re_lu_24 (LeakyReLU)</pre>	(None, 2, 2, 512)	0
flatten_3 (Flatten)	(None, 2048)	0
dropout_11 (Dropout)	(None, 2048)	0
dense_6 (Dense)	(None, 1)	2049
Total params: 4,305,409 Trainable params: 4,305,409 Non-trainable params: 0		

Figure 36: MNIST Critic

Architectures - MNIST Generator

Model: "generator"

Layer (type)	Output Shape	Param #
input_8 (InputLayer)	[(None, 128)]	0
dense_7 (Dense)	(None, 4096)	524288
batch_normalization_12 (Batc	(None, 4096)	16384
leaky_re_lu_25 (LeakyReLU)	(None, 4096)	0
reshape_3 (Reshape)	(None, 4, 4, 256)	0
up_sampling2d_9 (UpSampling2	(None, 8, 8, 256)	0
conv2d_25 (Conv2D)	(None, 8, 8, 128)	294912
batch_normalization_13 (Batc	(None, 8, 8, 128)	512
<pre>leaky_re_lu_26 (LeakyReLU)</pre>	(None, 8, 8, 128)	0
up_sampling2d_10 (UpSampling	(None, 16, 16, 128)	0
conv2d_26 (Conv2D)	(None, 16, 16, 64)	73728
batch_normalization_14 (Batc	(None, 16, 16, 64)	256
leaky_re_lu_27 (LeakyReLU)	(None, 16, 16, 64)	0
up_sampling2d_11 (UpSampling	(None, 32, 32, 64)	0
conv2d_27 (Conv2D)	(None, 32, 32, 1)	576
batch_normalization_15 (Batc	(None, 32, 32, 1)	4
activation_3 (Activation)	(None, 32, 32, 1)	0
cropping2d_3 (Cropping2D)	(None, 28, 28, 1)	0
Total params: 910,660 Trainable params: 902,082 Non-trainable params: 8,578		

Figure 37: MNIST Generator

Architectures - CARS Critic

Model: "Critic"		
Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 64, 64, 3)]	0
zero_padding2d (ZeroPadding2	(None, 68, 68, 3)	0
conv2d (Conv2D)	(None, 34, 34, 64)	4864
leaky_re_lu (LeakyReLU)	(None, 34, 34, 64)	0
conv2d_1 (Conv2D)	(None, 17, 17, 128)	204928
leaky_re_lu_1 (LeakyReLU)	(None, 17, 17, 128)	0
dropout (Dropout)	(None, 17, 17, 128)	0
conv2d_2 (Conv2D)	(None, 9, 9, 256)	819456
leaky_re_lu_2 (LeakyReLU)	(None, 9, 9, 256)	0
dropout_1 (Dropout)	(None, 9, 9, 256)	0
conv2d_3 (Conv2D)	(None, 5, 5, 512)	3277312
leaky_re_lu_3 (LeakyReLU)	(None, 5, 5, 512)	0
flatten (Flatten)	(None, 12800)	0
dropout_2 (Dropout)	(None, 12800)	0
dense (Dense)	(None, 1)	12801
Total params: 4,319,361 Trainable params: 4,319,361 Non-trainable params: 0		

Figure 38: CARS critic

Architectures - CARS Genator

Model: "generator"

Layer (type)	Output Shape	Param #
input_2 (InputLayer)	[(None, 256)]	0
dense_1 (Dense)	(None, 4096)	1048576
batch_normalization (BatchNo	(None, 4096)	16384
leaky_re_lu_4 (LeakyReLU)	(None, 4096)	0
reshape (Reshape)	(None, 4, 4, 256)	0
up_sampling2d (UpSampling2D)	(None, 8, 8, 256)	0
conv2d_4 (Conv2D)	(None, 8, 8, 128)	294912
batch_normalization_1 (Batch	(None, 8, 8, 128)	512
leaky_re_lu_5 (LeakyReLU)	(None, 8, 8, 128)	0
up_sampling2d_1 (OpSampling2	(None, 16, 16, 128)	0
conv2d_5 (Conv2D)	(None, 16, 16, 64)	73728
batch_normalization_2 (Batch	(None, 16, 16, 64)	256
leaky_re_lu_6 (LeakyReLU)	(None, 16, 16, 64)	0
up_sampling2d_2 (UpSampling2	(None, 32, 32, 64)	0
conv2d_6 (Conv2D)	(None, 32, 32, 32)	18432
batch_normalization_3 (Batch	(None, 32, 32, 32)	128
leaky_re_lu_7 (LeakyReLU)	(None, 32, 32, 32)	0
up_sampling2d_3 (UpSampling2	(None, 64, 64, 32)	0
conv2d_7 (Conv2D)	(None, 64, 64, 3)	864
batch_normalization_4 (Batch	(None, 64, 64, 3)	12
activation (Activation)	(None, 64, 64, 3)	0
Non-trainable params: 8,646		

Figure 39: CARS Generator

📄 M. Arjovsky and L. Bottou.

Towards principled methods for training generative adversarial networks, 2017.

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks.

In D. Precup and Y. W. Teh, editors, *Proceedings of the 34th International Conference on Machine Learning*, volume 70 of *Proceedings of Machine Learning Research*, pages 214–223, International Convention Centre, Sydney, Australia, 08 2017. PMLR.
References ii

S. Arora, R. Ge, Y. Liang, T. Ma, and Y. Zhang. Generalization and equilibrium in generative adversarial nets (GANs).

In D. Precup and Y. W. Teh, editors, *Proceedings of the 34th International Conference on Machine Learning*, volume 70 of *Proceedings of Machine Learning Research*, pages 224–232, International Convention Centre, Sydney, Australia, 8 2017. PMLR.

- A. Brock, J. Donahue, and K. Simonyan. Large scale gan training for high fidelity natural image synthesis, 2018.
- 📔 A. Clark, J. Donahue, and K. Simonyan.

Adversarial video generation on complex datasets, 2019.

References iii

M. Frid-Adar, I. Diamant, E. Klang, M. Amitai, J. Goldberger, and H. Greenspan.

Gan-based synthetic medical image augmentation for increased cnn performance in liver lesion classification.

Neurocomputing, 321:321–331, Dec 2018.

- I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.
 Generative adversarial networks, 2014.
- I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville. Improved training of wasserstein gans, 2017.

References iv

- M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, G. Klambauer, and S. Hochreiter.
 Gans trained by a two time-scale update rule converge to a nash equilibrium.
 CoRR, abs/1706.08500, 2017.
 J. Krause, M. Stark, J. Deng, and L. Fei-Fei.
 3d object representations for fine-grained categorization.
 In 4th International IEEE Workshop on 3D Representation and Recognition (3dRR-13), Sydney, Australia, 2013.
- M. Mirza and S. Osindero.
 Conditional generative adversarial nets, 2014.
- T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida.
 Spectral normalization for generative adversarial networks, 2018.

References v

- A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks, 2015.
- S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee.
 Generative adversarial text to image synthesis, 2016.
- T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen, and X. Chen.

Improved techniques for training gans.

In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, *Advances in Neural Information Processing Systems 29*, pages 2234–2242. Curran Associates, Inc., 2016.

 H. Thanh-Tung, T. Tran, and S. Venkatesh.
 Improving generalization and stability of generative adversarial networks.

In International Conference on Learning Representations, 2019.

L. Weng.

From gan to wgan.

lilianweng.github.io/lil-log, 2017.

Y. Wu, J. Donahue, D. Balduzzi, K. Simonyan, and T. Lillicrap. Logan: Latent optimisation for generative adversarial networks, 2019.