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Motivation

A stochastic process {Xt , t ∈ {0, 1 . . .}} with countable state
space S, is a discrete-time Markov chain if it satisfies the
Markov property:

P(Xt+1 = it+1|Xt = it ,Xt−1 = it−1, . . .)

= P(Xt+1 = it+1|Xt = it)∀is ∈ S
We define the one step conditional probability transition
matrix Pt as :

[Pt ](i ,j) := pi ,jt := P(Xt+1 = j |Xt = i)

Similarly, we define the h-step probability transition matrix,

hPt , as:

[hPt ](i ,j) :=h pi ,jt := P(Xt+h = j |Xt = i)
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Motivation

Using a conditional probability argument, one step at a time,
it can be easily shown that:

hPt =
h−1∏
s=0

Pt+s

That is, the whole Markov chain can be completely specified
by the one-step transition probabilities.

The estimation is usually achieved using the maximum
likelihood estimator:

pijt =
nijt∑

k∈S n
ik
t

where nijt denotes the number of transitions from state i to
state j in the age t.
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Motivation

The main problem in the non-homogenous case, is the several
amounts of parameters to estimate (one transition matrix per
each age of the process). That is, the model is
over-parametrized!

Therefore the statistical complexity of the estimation is highly
increased, and the overall quality of the estimation is reduced
(credibility problems, overfitting, high variance in the
estimation, etc).

Moreover, if it is necessary to include profiling variables to
take into account heterogeneity in the population, the
complexity increases even more!
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Objectives

In this paper we:

Discuss the application of generalized additive models
(GAMs) for the parsimonious and consistent estimation of the
several transition matrices of a non-homogeneous discrete
Markov chain.

Include possibility of using profiling variables to take into
account the heterogeneity of the population in the estimation.

Discuss some advantages for modeling, including how to
perform statistical inference for the parameters, dynamic
modeling and longitudinal studies.

Illustrate the methodology with real data in some actuarial
models, including dynamic life tables.
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Generalized Additive Models (GAM’s)

The generalized additive models (GAM) are characterized by
constituting the following components:


Y ∼ Exponential Family Random component

η = β0 + f1(W1) + . . .+ fk(Wk) Systematic component

g(µY ) = η Link function

where the fj are assumed to be soft functions, and g is a
monotonous function.

The estimation is achieved using the principle of regularized
maximum likelihood:

L(θ) + λ

(∫
(f (W ))2 dW

)
This estimator is asymptotically consistent and efficient.
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Estimation methodology

We propose the use of a generalized additive model with
multinomial response to estimate the transition probabilities
of a discrete non-homogeneous Markov Chain, If needed,
profiling variables and dynamical behavior can be included.

In order to take in count the non-homogeneity of the chain,
we assume that the one step probabilities pijt are soft
functions f in t, the age of the process:

g(pijt ) = f ij(t)

where g can be any link function appropriate for a probability
parameter.
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Advantages

1. The assumption of a soft curve is not far from reality and
reduces dramatically the complexity problem of usual
approaches. That is, we have a parsimonious estimation of
the probabilities.

2. Due to the smoothing, it is possible to have missing ages in
the estimation, as long as there exist enough data for
surrounding ages.

3. It is the possible to include profiling variables (W ) to take
into account the heterogeneity of the population:

g(pijt ) = f ij1 (t) + f ij2 (W )

4. Finally, all the estimation and the statistical inference
procedures are already available in statistical software. Hence
there is no need of doing extra coding
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Consistency of the estimation

We argue that the estimation approach is coherent within the
context of Markov models, since the GAM estimator coincides
with the maximum likelihood estimator, hence it inherits all of
its properties:

The estimator is consistent and asymptotically efficient.
Statistical inference procedures for GAM’s are valid for Markov
Chains as well

We prove this by showing that the GAM likelihood is
proportional to the one corresponding to a Markov chain
with the same data set.

For simplicity, we illustrate the case where we have a discrete
non-homogeneous Markov chain {Xt , t ∈ {0, 1, . . .}} with only
two states. The general case is completely analogous.
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Consistency of the estimation

Given a sample of N Markov chains {x1t }
T1
t=0, {x2t }

T2
t=0, . . . ,

{xNt }
TN
t=0, and denoting the vector of parameters as

θ = {pijt }, t ∈ {0, 1, . . .}, i , j ∈ {1, 2}, the likelihood function can
be written as:

L(θ) =
N∏

k=1

P(X0(θ) = xk
0 , . . . ,XTk (θ) = xk

Tk
)

=
N∏

k=1

P(X0(θ) = xk
0 )

Tk∏
t=1

P(Xt(θ) = xk
t |Xt−1(θ) = xk

t−1)

=
N∏

k=1

πxk0

Tk∏
t=1

∏
i,j∈S

(
pij
t

)1{xkt−1=i,xkt =j}

where πxk0
is the long run probability of being in the state xk0 , and

1{.} is the indicator function. The second line comes from
conditioning and applying the Markov Property.
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Consistency of the estimation

L(θ) ∝
N∏

k=1

Tk∏
t=1

∏
i,j∈S

(
pijt

)1{xk
t−1=i,xk

t =j}

∝

 N∏
k=1

Tk∏
t=1

2∏
j=1

(
p1jt

)1{xk
t−1=1,xk

t =j}
 N∏

k=1

Tk∏
t=1

2∏
j=1

(
p2jt

)1{xk
t−1=2,xk

t =j}


The penultimate line shows that the Markov chain likelihood
can be rewritten in a form which is proportional to a
multinomial likelihood
The last line shows that the likelihood can be factored in
separate terms for every state in the chain, each one being a
multinomial likelihood as well. Hence we can use separate
estimations for each stage !
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Longitudinal and Dynamical Approaches

Since individuals are observed through time, we are in a
longitudinal study. Here it is common to see the application of
mixed models [3] which can be easily adapted for GAM’s:

g(pijt ) = f ij(t) + αij
τ + ν ijl

where αij
τ and ν ijl are fixed or random effects for being in the

calendar time τ , and being the individual l , respectively.

A dynamical model can be estimated as well:

g(pijt (τ)) = f ij(t) + κij(τ)

where pijt (τ) makes explicit the relation with calendar time, τ ,
and κij(τ) is a smooth function of τ t.
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Hypothesis Testing for Non-Homogeneity

An important question that arises in this context, is if the
transition probabilities do change according to the age. That
is, if the chains is homogeneous:

H0 :pijt = pij ∀i , j ∈ S, ∀t ∈ {0, 1, . . .}
H1 :¬H0

We can use a regularized likelihood ratio test for comparison
of models:

Model 1: g(pijt ) = βij0 ∀i , j ∈ S, ∀t ∈ {0, 1, . . .}

Model 2: g(pijt ) = βij0 + f ij(t) ∀i , j ∈ S, ∀t ∈ {0, 1, . . .}

−2 (ln(L(θM1))− ln(L(θM2))) ≈ χ2
dif

where ln(L(θM)) is the loglikelihood of the estimated model
M, and dif is the difference between degrees of freedom
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Dynamic Life Tables with Portfolio Experience

A life table describes a survival model in discrete time which
is, in fact a two-state Markov chain with transition probability
matrix given by:

Pt =

[
pt qt
0 1

]
where pt(=: p11t ) is the one year survival probability for a
person of age t, and qt(=: p12t ) is the one year death
probability for a person of age t.

Colombia’s law declares that companies must use the RV08
life table, but it can be modified by the company if there is
enough experience in their portfolios.
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Dynamic Life Tables with Portfolio Experience

The biggest problem for companies to use their own tables is
related to the credibility of the estimation, since a lot of data
is necessary.

Here we proceed to estimate a dynamic life table for the
population of a confidential health company using
GAM’s

The data set contains the dates corresponding to birth, death
(if the case), first ingress to the company and retirement of
the company.

In order to avoid the credibility problems, we use a ”Bayesian
alike.approach to consider the RV08 as a baseline for the
estimation, just as described in [4].
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Dynamic Life Tables with Portfolio Experience

We consider a GAM with binary response, where the variable takes
the value of 1 if the person survives the next year, and 0 otherwise:

log(−log(pt(τ))) = β0 + f (t) + β1Gender + β2log(−log(p̃t))

+ β3 (Gender ∗ log(−log(p̃t))) + κ(τ)

where f is a soft function of the age, Gender is a dummy variable
which takes value of 1 if the individual is male and 0 if female, p̃t
is the survival probability given by the RV08, and κ is a soft
function of calendar time.
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Dynamic Life Tables with Portfolio Experience

Cuadro: Significance of GAM parameters for the life table

A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) 12.9110 1.5439 8.3628 < 0.0001
Gender -0.4487 0.1373 -3.2679 0.0011
log(−log(p̃t)) -0.9161 0.2349 -3.9001 0.0001
Gender ∗ log(−log(p̃t)) -0.0622 0.0230 -2.7043 0.0018

B. smooth terms edf Ref.df F-value p-value
f (Age) 1.9571 1.9982 63.2443 < 0.0001
κ(Year) 3.5903 3.9014 75.1478 < 0.0001

All the terms are statistically significant, and Likelihood ratio
tests for non-homogeneity and dynamic effects show that it is
necessary to consider them.

The effective number of terms used in the estimation is
1 + 1 + 1 + 1 + 1,96 + 3,59 = 9,55 ≈ 10.
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Dynamic Life Tables with Portfolio Experience

Figura: Estimation of GAM’s smooth terms for pt
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Dynamic Life Tables with Portfolio Experience

Figura: Forecast of survival probabilities pt for 2019

0 20 40 60 80 100

0.
6

0.
7

0.
8

0.
9

1.
0

Age

pt

Male − Estimation

Male − RV08

Female − Estimation

Female − RV08



Introduction Applications of GAM’s in Markov Chains Modeling Actuarial Applications Conclusions and Future Work

Outline

1 Introduction

2 Applications of GAM’s in Markov Chains Modeling
Generalized Additive Models (GAM’s)
Estimation methodology and advantages
Consistency of the estimation
Longitudinal and Dynamical Approaches
Hypothesis Testing for Non-Homogeneity

3 Actuarial Applications
Dynamic Life Tables with Portfolio Experience
Multi-state Model for Health Status

4 Conclusions and Future Work



Introduction Applications of GAM’s in Markov Chains Modeling Actuarial Applications Conclusions and Future Work

Multi-state Model for Health Status

Here we illustrate a Markov chain model to explain the
evolution of the health status of individuals using real
data from a confidential company.

The information consists of the diagnosis performed to the
whole individuals according during a period of time on 10
years.

Given the large number of possible diagnoses, we work only
with the most common to be observed in the population.

We develop separate models for each disease and the combine
them in only one model.
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Multi-state Model for Health Status

Let {X k
t , t ∈ {0, 1, . . .}} be DTMC that shows the presence of

a disease k at the beginning of age t for a particular individual.

Yes(1) No(2)kp12t

kp21t

kp11t = 1− kp12t

kp22t = 1− kp21t

Figura: State graph of process X k
t
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Multi-state Model for Health Status

Now, let {Xt = (X 1
t , . . . ,X

n
t ), t ∈ {0, 1, . . .}} be the

aggregate process of health status of an individual at the
beginning of age t. The state space is S = S1 × . . .× Sn.

The respective transition probabilities, under the assumption
of independence, can be computed as:

hp
i,j
t = P(Xt+h = i|Xt = j)

= P(X 1
t+h = j1, . . . ,X

n
t+h = jn|X 1

t = i1, . . . ,X
n
t = in)

=
n∏

k=1

k
hp

ik jk
t

Or in matrix notation:

hPt = 1
hPt ⊗ 2

hPt ⊗ . . .⊗ n
hPt
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Multi-state Model for Health Status

To estimate the one step transition probabilities of each Markov
chain, we consider two GAMs with binary response, where the
variable takes the value of 1 if the contemplated transition occurs
in the next step of the chain, and 0 otherwise.

log(−log(kp12t )) =k β10 +k β10Gender +k f 11 (t) +k f 12 (t) ∗Gender

log(−log(kp21t )) =k β20 +k β21Gender +k f 21 (t) +k f 22 (t) ∗Gender

where the f are soft function of the age, Gender is a dummy
variable that takes value of 1 if the individual is male and 0 if
female, and * denotes an interaction term.
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Multi-state Model for Health Status

Figura: Estimated one-year probabilities of getting ill and recovery for
Heart affections (i.e 9p12t and 9p21t )
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Conclusions and Future Work

These models are statistically consistent for the estimation of
transition probabilities, and they are very flexible.

It is easy to include complex relations, and the amount of
effective parameters is much lower than those obtained with
usual approaches.

In the particular case of life tables, the aforementioned
methodology solves naturally many problems that usually
arises during the estimation (Credibility, Smoothing, Profiling,
etc)

There is great unexplored potential of this models that can be
performed in actuarial sciences. Future work should study the
case for higher order Markov chains, and other applications.
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