

Strategic Pricing and Positioning in Response to Tax Notches: Evidence From Gasoline Retail

Carlos Hurtado

Department of Economics University of Illinois at Urbana-Champaign hrtdmrt2@illinois.edu

April 26th, 2018

Motivation

- Consumers respond to tax kink and notches.
 Chetty et al. (2011), Kleven and Waseem (2013), Chiou and Muehlegger (2014)
- Firms react to state taxes on their location decisions.
 Bartik (1985), Coughlin et al. (1991), Holmes (1998), Chirinko and Wilson (2008)
- Administrative borders create tax notches for firms and consumers.
- Tax notches create differentiated competition.
 Stolper (2017), Coyne (2017), Muehlegger and Sweeney (2017)
- However, tax notches also create differentiated location incentives
- ▶ In this paper, the relation between:
 - Bunching due to spatial tax notches.
 - Differentiated tax pass-through at the border.

Question and Methodology

Question:

- Do retailers bunch near the border due to spatial tax notches?
- What is the effect of administrative borders on the local competition?
- What model explains both discontinuous price and location choices?

Methodology:

- I use a unique dataset of prices and locations of 140,000 gas retailers
 web-scraping the network of GasBuddy.
- ▶ Model of firm location accounting for spatial tax notches.
 - Grid over America that uses tax differences across state boundaries.
- ► Tax pass-through for all retailers and those at the border.
 - Controls for gasoline regulations, regional market, and local demand.

Question and Methodology

Question:

- Do retailers bunch near the border due to spatial tax notches?
- What is the effect of administrative borders on the local competition?
- What model explains both discontinuous price and location choices?

Methodology:

- ► I use a unique dataset of prices and locations of 140,000 gas retailers
 - web-scraping the network of GasBuddy.
- Model of firm location accounting for spatial tax notches.
 - Grid over America that uses tax differences across state boundaries.
- ► Tax pass-through for all retailers and those at the border.
 - Controls for gasoline regulations, regional market, and local demand.

Preview of Findings

Bunching of gasoline retailers due to state tax notches.

- Tax notches lower the odds of seeing a gas station across the border.
- Higher taxes reduce the expected number of retailer at the border.
- Differentiated pricing function at the border.
 - Average pass-through is 100%, but at the border is smaller.
 - The pass-through is higher for stations at the low tax side of the border.
 - Regular gas: the pass-through at the border can be higher than 100%.

A model of price discrimination: A tale of two elasticities

2 Methodology and Results

C. Hurtado (UIUC - Economics) Strategic Pricing and Positioning

On the Agenda

2 Methodology and Results

C. Hurtado (UIUC - Economics) Strategic Pricing and Positioning

- Unique dataset that includes:
 - Excise gasoline tax: American Petroleum Institute
 - Location of gasoline retailers: Web-scraping a prominent website.
 - Spatial tax notches: $\Delta \tau$, using spatial location.
 - Regulation: Gasoline requirements and regional supply.
 - Population: Census block groups estimates from the ACS.
 - <u>Roads</u>: Primary and secondary roads from Census Bureau.
 - Gas Price: Daily reported price of retailers.

- Large dataset on gasoline prices and stations locations
 - Web-scraping information from the network of GasBuddy¹.
- > Other research on retail gasoline markets also uses the same data.
 - Price:

Eckert and West (2004b,a, 2005), Noel (2015), Yilmazkuday and Yilmazkuday (2016), Byrne (2017), Coyne (2017), González and Hurtado (2018)

- Consumer search:

Lewis and Marvel (2011), Byrne et al. (2013)

- Potential sample selection: Atkinson (2008)
- ▶ In this paper: location choice of retailers and pricing function.
- Example: Kansas, MO Paris, PA

 $^{^{1}}$ The network operates under different advertiser-sponsored domain names: www.chicagogasprices.com, www.newyorkgasprices.com, www.losangelesgasprices.com, ect.

Source: GasBuddy Webpage (retrieved on Nov-7-2017)

Average Price: 2.65 West Virginia Pennsylvania Tax: 59.3 ¢ Tax: 35.7¢ · · · · · · · · · · · · · · · 2.58 2.69 **M** 12 5 8

Data

 $\Delta \tau = 23.6$ ¢

Source: GasBuddy Webpage (retrieved on Nov-7-2017)

Data

Number of Retailers by Petroleum Administration for Defense Districts

PADD Region [*]	Year 2015^A	Year 2018^B
East Coast	$55,\!170$	49,798
Midwest	38,713	41,006
Gulf Coast	$24,\!442$	$25,\!495$
Rocky Mountain	4,292	5,049
West Coast	$17,\!480$	$16,\!266$
Total	140,097	137,614

♣ Excluding Alaska and Hawaii

- A Gasoline Stations and Convenience Stores from CBP
- B Information from GasBusy.com

Source: County Business Patterns (CBP) and Author's calculation

Spatial Tax Notches: $\Delta \tau$

Source: Author's calculation

Source: Author's calculation

Bunching at the Border:

Bunching at the Border:

Spatial Price Variation

On the Agenda

2 Methodology and Results

Methodology: Grid America

- Rectilinear grid of 5 km (3.1 mi) by 5 km to cover the continental US.
- Squares divided using administrative borders and coastlines.
 - Around 330 thousand grid points.

Conditional logit model is computationally unfeasible to estimate.

- 330,000 location choices and 140,000 retailers.
- Identical coefficient estimates to Poisson.

Guimarães et al. (2003), Schmidheiny and Brülhart (2011)

Probability models that account for the spatial tax differences.

Methodology: Grid America

Methodology: Grid America

► Unobserved preferences of the retailers for a particular grid location:

$$y_g^* = \alpha_s + \Delta \tau_g \beta_0 + x_g' \beta + \varepsilon_g, \qquad (1)$$

where

- α_s : State specific constant term.
- $\Delta \tau_g$: Tax notch for each element of the grid.
- x_g : population, number of roads, distance to roads, area of grid point

Observed choice defined as:

$$y_g = \left\{ egin{array}{cc} 1 & y_g^* > 0 \ 0 & y_g^* \leq 0 \end{array}
ight.$$

Poisson regression: logarithm of the expected number of stations:

$$\log\left(\lambda_{g}\right) = \alpha_{s} + \Delta \tau_{g} \beta_{1} + x_{g}^{\prime} \beta + u_{g}$$
⁽²⁾

Probability Model Considering Administrative Boundaries

	LPM	Logit	Probit
$\Delta \text{ Tax [Cents]} \equiv \beta_0$			
Population [Thous.]			
Number of Roads			
Distance to Road [Km.]			
Area [Sq. Km.]			
State Fixed Effects			
Prob. Estimate $\equiv P$			
$\beta_0 / P ~[\%]$			
Num. obs.			
Asterisks denote statistical signif	icance at the	***1%, **5%, ar	nd *10% level.

Asterisks denote statistical significance at the ***1%, **5%, and *10% level. Robust standard errors in parentheses clustered by county. LPM: Linear Probability Model. Coefficients of Logit and Probit models show marginal effect at the mean.

Probability estimates report the mean of the estimated probabilities.

Probability	Model	Considering	Administrative	Boundaries

	LPM	Logit	Probit
Δ Tax [Cents] $\equiv \beta_0$	0009^{**}	0003^{**}	0005^{**}
	(.0003)	(.0001)	(.0002)
Population [Thous.]	.0100***	$.0112^{***}$.0187***
	(.0016)	(.0006)	(.0011)
Number of Roads	$.0588^{***}$	$.0095^{***}$	$.0181^{***}$
	(.0013)	(.0006)	(.0011)
Distance to Road [Km.]	0008^{***}	0059^{***}	0064^{***}
	(.0001)	(.0001)	(.0002)
Area [Sq. Km.]	.0010***	$.0004^{***}$.0006***
	(.0002)	(.0001)	(.0001)
State Fixed Effects	yes	yes	yes
Prob. Estimate $\equiv P$	0.1152	0.1152	0.1134
$\beta_0/P ~[\%]$	-0.82	-0.24	-0.41
Num. obs.	331,076	331,065	331,065

Asterisks denote statistical significance at the ***1 %, **5 %, and *10 % level. Robust standard errors in parentheses clustered by county.

LPM: Linear Probability Model.

Coefficients of Logit and Probit models show marginal effect at the mean. Probability estimates report the mean of the estimated probabilities.

Count Regression Considering Administrative Boundaries²

	Full	Pr > 5%	Pr>10%
Δ Tax [Cents] $\equiv \beta_1$			
Population [Thous.]			
Number of Roads			
Distance to Boad [Km]			
Distance to Hoad [Rin.]			
Area [Sq. Km.]			
State Fixed Effects			
Count Estimates $\equiv \lambda$			
β_1/λ [%]			
Num. obs.			
Asterisks denote statistical significant	cance at the	e ***1%, **5%, ar	nd *10% level.
Robust standard errors in parenth Full: Estimates for the full sample	Pr>5% · F	ed by county. stimates for the si	ubsample with

Full: Estimates for the full sample, $F^{+}S^{+}$, $F^{+}S^{+}$ is sufficient to full subsample with probability of a retailer bigger than 10° , R^{+} 10^{\circ}. Estimates for the subsample with probability of a retailer bigger than 10[°]. All coefficients show marginal effect at the mean.

Count estimates report the mean of the estimated counts.

 2 I reestimate the probit model excluding Δ Tax as explanatory variable for these \bigcirc

	Full	Pr > 5%	Pr > 10%
$\Delta \text{ Tax [Cents]} \equiv \beta_1$	0004^{**}	0145^{*}	0185^{*}
	(.0001)	(.0056)	(.0085)
Population [Thous.]	.0002***	.0073***	$.0116^{***}$
	(.0000)	(.0011)	(.0016)
Number of Roads	.0019***	.0759***	.1138***
	(.0002)	(.0042)	(.0060)
Distance to Road [Km.]	0101***	2806^{***}	3036***
	(.0007)	(.0145)	(.0262)
Area [Sq. Km.]	.0009***	.0251***	.0286***
	(.0001)	(.0026)	(.0040)
State Fixed Effects	yes	yes	yes
Count Estimates $\equiv \lambda$	0.414	1.0757	1.5949
β_1/λ [%]	-0.09	-1.34	-1.16
Num. obs.	331,065	125,330	82,262

Count Regression Considering Administrative Boundaries²

Asterisks denote statistical significance at the $^{***}1\%$, $^{**}5\%$, and $^*10\%$ level. Robust standard errors in parentheses clustered by county.

Full: Estimates for the full sample, Pr>5%: Estimates for the subsample with probability of a retailer bigger than 5%, Pr>10%: Estimates for the subsample with probability of a retailer bigger than 10%. All coefficients show marginal effect at the mean.

Count estimates report the mean of the estimated counts.

 2 I reestimate the probit model excluding ΔT ax as explanatory variable for these $\ref{eq:linear}$

Methodology: No time

Ideal setup:

$$p_{i,t} = \beta \tau_{i,t} + W_{i,t} \delta + \rho_i + \gamma_t + \epsilon_{i,t}$$
(3)

for retailer *i* on date *t*.

- ρ_i : Retailer fixed effects to model individual heterogeneity.
- γ_t : Date fixed effects to model price cycles and trends. Example.

But, there is not enough variation of taxes on a daily frequency.

- $\tau_{i,t}$ is in fact τ_i .
- No identification of tax pass-through under retailer fixed effects.

How can we remove the time effects from the price of each retailer?

- For example, for each retailer, compute average price over time
- Using the individual average price has some complications.

Methodology: No time

First step, remove time effects from price:

$$p_{i,t} = \rho_i + \gamma_t + \epsilon_{i,t} \tag{4}$$

for retailer i on date t.

- ρ_i : Retailer fixed effects (average prices for station *i* over time)
- γ_t : Date fixed effects

Second step, model the price using the fixed effects estimates:

$$\hat{\rho}_i = \beta \tau_i + \mathbb{1}(\mathsf{Regulation}_i)\gamma + \mathbb{1}(\mathsf{PADD}_i)\eta + X_i\theta + \varepsilon_i \qquad (5)$$

where

- τ_i : State tax of retailer *i*
- 1(Regulation_i): RFG, RVP, OF, POT
- $\mathbb{1}(PADD_i)$: Regional petroleum markets
- X_i : Local demand characteristics for retailer i

▶ Third step, estimate $\hat{\beta}$ using weighted OLS

The dots and triangles of each figure show the average price using the data within 1 mile.

LLR:Local Linear Regression.

LLR:Local Linear Regression.

LLR:Local Linear Regression.

	(1)	(2)	(3)	(4)	(5)
	Pan	el A: Regu	ılar		
Tax [Cents]					
Num. obs.					
RMSE					
	Pane	l B: Midg	rade		
Tax [Cents]					
Num. obs.					
RMSE					
	Pane	el C: Prem	ium		
Tax [Cents]					
Num. obs.					
RMSE					
Demand Controls					
Regulation					
PADD	yes	yes	yes	yes	yes
Sample	States	All	All	Border	Border

 $^{***}p < 0.001, \ ^{**}p < 0.01, \ ^{*}p < 0.05$

Robust standard errors in parentheses clustered by state

	(1)	(2)	(3)	(4)	(5)
	Par	nel A: Regu	lar		
Tax [Cents]	1.05^{***}	1.09^{***}	1.07^{***}	.90***	.85***
	(.11)	(.12)	(.11)	(.15)	(.14)
Num. obs.	49	126,740	$126,\!694$	11,632	11,625
RMSE	35.97	14.61	14.40	14.64	14.40
	Pan	el B: Midgr	ade		
Tax [Cents]	.99***	1.03^{***}	1.01***	.76***	.72***
	(.13)	(.14)	(.13)	(.13)	(.13)
Num. obs.	49	109,697	109,658	10,132	10,126
RMSE	36.17	15.01	14.82	15.45	15.37
	Pan	el C: Premi	ium		
Tax [Cents]	1.08^{***}	1.06^{***}	1.04^{***}	.76***	.74***
	(.15)	(.16)	(.15)	(.11)	(.12)
Num. obs.	49	110,264	110,223	10,161	10,155
RMSE	38.63	17.08	16.97	17.38	17.32
Demand Controls	no	no	yes	no	yes
Regulation	yes	yes	yes	yes	yes
PADD	yes	yes	yes	yes	yes
Sample	States	All	All	Border	Border

 $^{***}p < 0.001, \ ^{**}p < 0.01, \ ^{*}p < 0.05$

Robust standard errors in parentheses clustered by state

	(1)	(2)	(3)
Low : Tax	1.11***	.88**	.78*
	(.22)	(.28)	(.38)
High: Tax	.74***	.61***	.65***
	(.12)	(.12)	(.11)
Type of Gasoline	Regular	Midgrade	Premium
All Other Controls	yes	yes	yes
Share of Low [%]	52	51	52
Share of High [%]	48	49	48
Num. obs.	11,625	10,126	10,155
RMSE	13.91	14.92	16.89

 $^{***}p < 0.001, \ ^{**}p < 0.01, \ ^*p < 0.05$

▶ Price may also depend on $\Delta \tau$ and the distance to the border, d_i :

$$p_{i,t} = \beta \tau_i + \gamma \Delta \tau_i + \eta d_i \Delta \tau_i + \theta d_i^2 \Delta \tau_i + \cdots$$

= $\beta \tau_i + \gamma (\tau_i - \tau_{-i}) + \cdots$
 $\cdots + \eta d_i (\tau_i - \tau_{-i}) + \theta d_i^2 (\tau_i - \tau_{-i}) + \cdots$
= $(\beta + \gamma + \eta d_i + \theta d_i^2) \tau_i - (\gamma + \eta d_i + \theta d_i^2) \tau_{-i} + \cdots$

where

- τ_i : State tax for retailer *i*.
- τ_{-i} : Out of state tax across the border for retailer *i*

▶ Price may also depend on $\Delta \tau$ and the distance to the border, d_i :

$$p_{i,t} = \beta \tau_i + \gamma \Delta \tau_i + \eta d_i \Delta \tau_i + \theta d_i^2 \Delta \tau_i + \cdots$$

= $\beta \tau_i + \gamma (\tau_i - \tau_{-i}) + \cdots$
 $\cdots + \eta d_i (\tau_i - \tau_{-i}) + \theta d_i^2 (\tau_i - \tau_{-i}) + \cdots$
= $(\beta + \gamma + \eta d_i + \theta d_i^2) \tau_i - (\gamma + \eta d_i + \theta d_i^2) \tau_{-i} + \cdots$

where

- τ_i : State tax for retailer *i*.

- τ_{-i} : Out of state tax across the border for retailer *i*

▶ Price may also depend on $\Delta \tau$ and the distance to the border, d_i :

$$p_{i,t} = \beta \tau_i + \gamma \Delta \tau_i + \eta d_i \Delta \tau_i + \theta d_i^2 \Delta \tau_i + \cdots$$

= $\beta \tau_i + \gamma (\tau_i - \tau_{-i}) + \cdots$
 $\cdots + \eta d_i (\tau_i - \tau_{-i}) + \theta d_i^2 (\tau_i - \tau_{-i}) + \cdots$
= $(\beta + \gamma + \eta d_i + \theta d_i^2) \tau_i - (\gamma + \eta d_i + \theta d_i^2) \tau_{-i} + \cdots$

where

- τ_i : State tax for retailer *i*.
- τ_{-i} : Out of state tax across the border for retailer *i*

	(1)	(2)	(3)
Low : Tax	1.09^{***}	.89***	.79*
	(.19)	(.26)	(.35)
High: Tax	.89***	.70***	.77***
	(.12)	(.13)	(.13)
Low : Tax \times Dist.	.08**	.03	.05
	(.03)	(.06)	(.06)
High: $Tax \times Dist$	16^{**}	12^{*}	14^{**}
	(.06)	(.05)	(.05)
Low : Tax out \times Dist.	07^{***}	03	05
	(.02)	(.03)	(.04)
High: Tax out \times Dist.	.21**	.17**	.20**
	(.08)	(.06)	(.06)
Type of Gasoline	Regular	Midgrade	Premium
All Other Controls	yes	yes	yes
Share of Low [%]	52	51	52
Share of High [%]	48	49	48
Num. obs.	11,625	10,126	10,155
RMSE	13.69	14.84	16.78

 $^{***}p < 0.001, \, {}^{**}p < 0.01, \, {}^{*}p < 0.05$

	(1)	(2)	(3)
Low : Tax	1.19^{***}	.99***	.88*
	(.19)	(.26)	(.35)
High: Tax	.94***	.72***	.81***
	(.12)	(.13)	(.13)
Low : Tax \times Dist.	.04	08	.04
	(.11)	(.22)	(.22)
High: $Tax \times Dist$	47^{**}	36*	50^{**}
	(.18)	(.17)	(.16)
Low : Tax out \times Dist.	13	02	11
	(.07)	(.15)	(.16)
High: Tax out \times Dist.	.62*	.52*	$.71^{***}$
	(.25)	(.24)	(.20)
Low : Tax \times Dist. ²	.00	.02	00
	(.03)	(.05)	(.05)
High: Tax \times Dist. ²	$.08^{*}$.06	.09**
	(.03)	(.03)	(.03)
Low : Tax out \times Dist. ²	.02	00	.02
	(.02)	(.03)	(.03)
High: Tax out \times Dist. ²	11^{*}	09	13^{**}
	(.04)	(.05)	(.04)
Type of Gasoline	Regular	Midgrade	Premium
All Other Controls	yes	yes	yes
Share of Low [%]	52	51	52
Share of High [%]	48	49	48
Num. obs.	11625	10126	10155
RMSE	13.60	14.80	16.72

C. Hurtado (UIUC - Economics)

Strategic Pricing and Positioning

On the Agenda

2 Methodology and Results

Conclusions

- Bunching of gasoline retailers due to state tax notches.
 - Negative effect of tax notches on the probability of seeing a fueling station across the border.
 - Expected number of stations is smaller on the border of the state with higher tax.
- Differentiated pricing function at the border.
 - Average pass-through is 100%, but at the border is smaller.
 - The pass-through is higher for stations at the low tax side of the border.
 - Regular gas: the pass-through at the border can be higher than 100%.
- More research is needed: How to model location choice and differentiated pass-through?
- More data: City and county level for taxes

Thank you!

questions, comments, suggestion: hrtdmrt2@illinois.edu

References I

- Atkinson, B. 2008. On retail gasoline pricing websites: potential sample selection biases and their implications for empirical research. Review of Industrial Organization, 33, 161–175.
- Bartik, T. J. 1985. Business location decisions in the united states: Estimates of the effects of unionization, taxes, and other characteristics of states. Journal of Business & Economic Statistics, 3, 14–22.
- Byrne, D. P. 2017. Gasoline pricing in the country and the city. Working paper.
- Byrne, D. P., Leslie, G. W., Ware, R. 2013. How do consumers respond to gasoline price cycles?
- Chetty, R., Friedman, J. N., Olsen, T., Pistaferri, L. 2011. Adjustment costs, firm responses, and micro vs. macro labor supply elasticities: Evidence from danish tax records. The quarterly journal of economics, 126, 749–804.
- Chiou, L., Muehlegger, E. 2014. Consumer response to cigarette excise tax changes.
- Chirinko, R. S., Wilson, D. J. 2008. State investment tax incentives: A zero-sum game? Journal of Public Economics, 92, 2362–2384.

References II

- Coughlin, C. C., Terza, J. V., Arromdee, V. 1991. State characteristics and the location of foreign direct investment within the united states. The Review of Economics and Statistics, 675–683.
- Coyne, D. 2017. Crossing the Border: How Political Boundaries Affect Gas Price Competition and State Motor Fuel Tax.
- Eckert, A., West, D. S. 2004a. Retail gasoline price cycles across spatially dispersed gasoline stations. The Journal of Law and Economics, 47, 245–273.
- Eckert, A., West, D. S. 2004b. A tale of two cities: Price uniformity and price volatility in gasoline retailing. The Annals of Regional Science, 38, 25–46.
- Eckert, A., West, D. S. 2005. Price uniformity and competition in a retail gasoline market. Journal of Economic Behavior & Organization, 56, 219–237.
- González, J., Hurtado, C. 2018. Station Heterogeneity and the Dynamics of Retail Gasoline Prices.
- Guimarães, P., Figueirdo, O., Woodward, D. 2003. A tractable approach to the firm location decision problem. Review of Economics and Statistics, 85, 201–204.
- Holmes, T. J. 1998. The effect of state policies on the location of manufacturing: Evidence from state borders. Journal of Political Economy, 106, 667–705.

References III

- Kleven, H. J., Waseem, M. 2013. Using notches to uncover optimization frictions and structural elasticities: Theory and evidence from pakistan. The Quarterly Journal of Economics, 128, 669–723.
- Lewis, M. S., Marvel, H. P. 2011. When do consumers search? The Journal of Industrial Economics, 59, 457–483.
- Muehlegger, E., Sweeney, R. L. 2017. Pass-through of input cost shocks under imperfect competition: Evidence from the us fracking boom.Technical report, National Bureau of Economic Research.
- Noel, M. D. 2015. Do edgeworth price cycles lead to higher or lower prices? International Journal of Industrial Organization, 42, 81–93.
- Schmidheiny, K., Brülhart, M. 2011. On the equivalence of location choice models: Conditional logit, nested logit and poisson. Journal of Urban Economics, 69, 214–222.
- Stolper, S. 2017. Who Bears the Burden of Energy Taxes? The Role of Local Pass-Through.
- Yilmazkuday, D., Yilmazkuday, H. 2016. Understanding gasoline price dispersion. The Annals of Regional Science, 57, 223–252.

Total State Tax and Fees Nov 2017

Location of Gasoline Retailers

Colored Maps

Strategic Pricing and Positioning

Colored Maps

Back Source: EIA Regional movements of crude oil and petroleum products

Population and Roads

Colored Maps

Source: Author's calculation