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1 Introduction

This document presents a detailed description of the programming and estimation of structural

demand models in economics. Applications have grown exponentially since they were first

introduced in the 90s. In particular, they have grown popular in marketing because they

allow estimating cross-price elasticities, in policy evaluation because they allow conducting

counterfactual scenarios, and in finance because they allow measuring the effect of competition

on risk hedging. Structural demand models are called “structural” mainly for two reasons:

one is that they rely on the theoretical fundamentals of microeconomics, namely the existence

of utility and production functions; and the second is that the parameters these models

allow to estimate for describing preferences and technology are not expected to vary over

the short-term (Berry et al., 1995). The estimation techniques usually employed for these

models are flexible enough to allow for different functional forms in both the demand and the

supply side. However, a good specification for the model requires a proper understanding

regarding consumer choice over products (whether such choices are static or dynamic),

imperfect competition in the market (whether firms compete in prices or quantities) and how

products interact with each other according to the consumer preferences (whether they are

homogeneous, vertically differentiated, or horizontally differentiated).

In this document we focus on the description of static choices in markets where firms compete

by setting the prices that maximize their profits in markets with vertically and horizontally

differentiated products. Although extensions to the other cases can be easily done.

The field of empirical industrial organization emerged from various needs. Modeling im-

perfect competition among firms, both from the theoretical and the empirical perspectives,

started to be crucial as researchers began to study the structure of industries. Theoretical

approaches were developed earlier than empirical ones thanks to advances in game theory

and data limitations. Sources of imperfect competition such as barriers to entry, asymmetric

information, product differentiation, and pricing strategies were introduced in the mid 1980s

by the works of Eaton and Lipsey (1980), Stigler (1983), Tirole (1988), and Stiglitz (1977).

However, empirical approaches linking theoretical models to data were not introduced until

the late 1980s with works such as the ones developed by Strickland (1976), Martin (1979),
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Geroski (1982), and Caves et al. (1980), which mainly relied in -allegedly- exogenous industry

cross-variation to identify casual effects of imperfect competition on outcomes measures such

as profits, productivity, prices or costs. However, arguments about the exogeneity of outcome

measures to cross-industry differences were not compelling. Schmalensee (1989), for example,

argued:

“[...] in the long-run equilibria with which cross-section studies must be primarily

concerned, essentially all variables that have been employed in such studies are

logically endogenous. This means that there are in general no theoretically

exogenous variables that can be used as instruments to identify and estimate any

structural equation”.

It is important to notice that economists have long been motivated by the challenge of

identifying causal effects and computing counterfactual scenarios. This motivation eventually

lead, in the late 1980s, to what Bresnahan (1989) coined as the field of “New Empirical

Industrial Organization” (NEIO). Such field started to be a reference for studies dedicated to

the modeling of within-industry differences for explaining and testing hypotheses of consumer

and firm behavior. Studies in the NEIO field were also developed thanks availability of

new data sets. Researchers, however, were still concerned with identifying the structural

parameters of theoretical models, which they argued remained unchanged when computing

counterfactual scenarios.

During the 1990s, studies proposing estimation techniques and identification strategies of

structural models proliferated Berry et al. (1995, 1999) as well as the number of applications in

different markets from the ready-to-eat cereal market (Nevo, 2001) to the telecommunications

market (Kim, 2006). Almost every industry with an imperfect competition setting was subject

of study by NEIO researchers. Nevertheless, detractors grew large in number at the same time.

The estimation and identification of most structural empirical models were only possible under

strong assumptions which constrained the set of attainable equilibria that ware intended

to be linked to the data afterwards (Caplin and Nalebuff, 1991; Chintagunta et al., 2006).

Critics also argued heavily on the concern that numerical approaches for estimation could

often lead to different results in the counterfactual analyses, which in turn, would depend on
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the convergence thresholds set by the researcher or on the algorithm used to compute the

equilibrium. This raised many questions regarding how structural the estimations really were

and how could results be extrapolated (Brown and Walker, 1989).

Such criticisms have forced NEIO researchers to begin relaxing several assumptions on which

their models rely and studying the consequences of using different numerical algorithms for

estimation (Knittel and Metaxoglou, 2008; Dubé et al., 2009a). The most difficult criticisms

to address are those regarding dynamic structural models, since there are infinite number of

equilibria from which it is crucial to select one for estimation to be feasible. This is where the

knowledge frontier in NEIO is currently standing (Nevo and Rosen, 2012; Ho and Lee, 2013;

Gowrisankaran et al., 2014). For further description on what has lead NEIO to its current

state of art, the reader can refer to Einav and Levin (2010).

In the folloeing sections of this document we focus on the description of structural models,

their estimation techniques and identification strategies as proposed first by Berry et al.

(1995). We also describe how different specifications lead to different conclusions and then

extend to how such models are programmed in several object-oriented statistical software.

2 Economic assumptions

To understand how statistical approaches link theoretical models to the data in the NEIO,

first we have to go back to the basics of economic models of imperfect competition.

2.1 Imperfect competition in the supply side: simultaneous pro-

duction and pricing decisions

Production decisions

Assume there are F firms competing setting quantities in an homogeneous product market.

The problem of firm f is to maximize its profits function which is defined as the difference
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between its own revenue and costs:

max
qf

πf = P (Q)qf − C(qf ), (1)

where P (Q) is the inverse demand function and Q ≡
∑F

f=1 qf . Under the assumption that

the profit function is concave in quantity (∂2πf/∂
2qf < 0), the solution to the firm’s problem

is equivalent to computing the level of production that equals marginal income to marginal

cost. Notice, on the one hand, that producing above such level would make each additional

unit to cost more it than what the firm can obtain from selling it in the market, hence

profits can increase by reducing production. On the other hand, producing below such level

would make any additional unit to be more profitable in the margin so that the firm could

achieve higher profits by selling more units as a whole. Therefore, the production level that

maximizes profits is achieved when:

P (Q) +
∂P

∂Q

∂Q

∂qf
qf =

∂C

∂qf
. (2)

More generally, marginal revenue, the left-hand side of equation (2), can be rewritten as:

MRf = P (Q) + θ
∂P

∂Q
qf for θ =

∂Q

∂qf
, (3)

where θ is a parameter that defines the firms’ behavior which, in turn, describes the competitive

structure of the market. For instance, θ = 0 denotes the case perfect competition. We can

also express θ equivalently as:

MRf = P (Q) +

(
θ1 + θ2

1

sf

)
∂P

∂Q
qf , (4)

where sf = qf/Q. When θ1 = θ2 = 0, price equals marginal cost in the optimal production

level and firms exhibit no market power; when θ1 = 1 and θ2 = 0 the first order condition

denotes the standard Cournot model solution with firms competing simultaneously via

quantities; and when θ1 = 0 and θ2 = 1, then qj = Q and there is market power equivalent to

a monopoly structure.
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Overall, notice that markups, which we denote by bf , in the first order condition of the firm’s

problem is a function that depends only on the demand parameters: marginal income which is

the derivative of the inverse demand function and units sold or the respective market shares.

bf = P (Q)− ∂C

∂qf
= −θ∂P

∂Q
qf . (5)

Pricing decisions

Now consider the case in which firms are choosing prices instead of quantities so that their

profit maximization problem is as follows:

max
Pf

πf = Pfq(Pf , P−f )− C(qf (Pf , P−f )), (6)

where P−f denotes the vector of prices set by all the firms other than f . The first order

condition with respect to Pf , after rearranging terms, yields to the pricing equations of the

Nash-Bertrand equilibrium:

Pf −
∂C

∂qf
= − 1

∂qf/∂Pf
qf (Pf ) = −∂Pf

∂qf
qf (Pf ). (7)

As in the competition by quantities game, we can rewrite the expression above introducing

term θ:

Pf −
∂C

∂qf
= −θ∂Pf

∂qf
qf (Pf ). (8)

In this case, when θ = 0, there is no product differentiation and we fall in the Bertrand’s

paradox with price being equal to marginal cost. But for θ > 0 firms can exert market

power through product differentiation charging positive markups. Markups in this case are a

function of the same demand parameters as in the case of competition via quantities. So lets

turn to the demand side for understanding of such parameters.
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2.2 Consumer theory and demand derivation

2.2.1 Traditional approaches

Assume consumer preferences are rational and, thus, can be represented by an utility function.

Consumer theory states that consumer i’s demand for two goods, x1 and x2, with prices P1

and P2, respectively, is determined by her utility maximization problem subject to a budget

constraint:

max
x1,x2

Ui(x1, x1) s.t Yi = P1x1 + P2x2, (9)

where Yi is i’s income. The solution to this problem yields the Marshallian demands

which depend on income and prices, namely x∗1(P1, P2, Yi) and x∗2(P1, P2, Yi). Equivalently,

Marshallian demands can be obtained from the derivatives of the indirect utility function

V ∗i (P1, P2, Yi) with respect to prices.1 This approach to demand derivation is often more

convenient for empirical studies as the indirect utility function also allows us to obtain the

share of each good on consumer i’s total expenditure (or income) using the logarithmic

version of Roy’s identity:

sj(P1, P2, Yi) = −∂ log(V ∗i (P1, P2, Yi))/∂ log(pj)

∂ log(V ∗i (P1, P2, Yi))/∂ log(Yi)
for j = 1, 2.

For example, assume i’s utility is for consuming goods 1 and 2 can be represented by Cobb-

Douglas function. In this case, the log of the indirect utility function will have a translog

functional form as below:

log(Vi(P1, P2, Yi)) = α0 +
∑
j=1,2

αj log

(
Pj
Yi

)
+

1

2

∑
j=1,2

∑
k=1,2

βjk log

(
Pj
Yi

)
log

(
Pk
Yi

)
,

where j and k denote goods’ subindices. Given this indirect utility function, the share of

good j on total consumer’s i expenditure can be computed as:

wj(P1, P2, Yi) =
αj +

∑
j=1,2 βjk log

(
Pk

Yi

)
∑

j=1,2 αj +
∑

j=1,2

∑
k=1,2 βjk log

(
Pk

Yi

) .
1In microeconomic theory this is known as Roy’s identity.
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Using the estimation methods already developed by the NEIO literature and assuming the

availability of data on prices, income, and sales, we can obtain parameter estimates for the

α’s and β’s. In particular, such estimates can be computed using only the shares function of

one of the goods since shares add up to 1. Generalizing to the case of J goods, this means we

would have to estimate J − 1 equations and J(J + 1) parameters. Therefore, the estimation

exercise becomes problematic as the number of goods increases. For example, having 100

products would require estimation of 100 cross price elasticities and one income elasticity for

each of 100 products. In markets with highly differentiated products this is computationally

infeasible. Hence, the need to use another identification strategy for deriving demand from

consumer theory.

Aggregation of goods that permits finding reasonable structural parameters is one way of

addressing the curse of dimensionality. Hedonic analysis and discrete choice models are

some methodologies usually employed to derive reasonable substitution patterns and shares

functions. Below we focus on the discrete choice case.

2.2.2 Discrete choice approach

Consider a mass of N consumers, each of them choosing among j = 1, . . . , J products to buy

in a given market. Consumer i’s indirect utility function satisfies all rationality conditions

and is given by the following Cobb-Douglas specification:

Uij = G(Yi, Xj, Pj)e
εij , (10)

where Xj is a vector describing product j’s characteristics, Pj is the price of product j, Yi

is consumer i’s income, εij is a random shock to the utility function, and G is a function

linear in logs. Taking logs on both sides of this equation, we can rewrite the indirect utility

function as:

uij = γYi + βXj + αPj + εij, (11)
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where ln(Uij) ≡ uij and {γ, β, α} are the parameters describing preferences. Consumers

choose product j over all other alternatives if uij ≥ uik for allj 6= k, that is, when:

uij − uik = βXj + αPj + εij − (βXk + αPk + εik) ≥ 0. (12)

Therefore, the probability of consumer i choosing product j can be expressed as:

Prob[uij − uik ≥ 0] = Prob[εik − εij ≤ δj − δk], (13)

where δj is denoted as the mean utility associated with product j.

If we have an assumption on the probability distribution of ε we can derive choice probabilities

for each consumer i as:

sij =

∫
ε

dPε. (14)

Notice that the discrete choice setting only requires estimation of α, β, and γ, which represents

a significant reduction on the dimentionality of the problem. However, it is not clear whether

the discrete choice approach and the choice probabilities implied by the model are consistent

with the theory of utility maximization from which demands are obtained. Theorem I in

McFadden (1978) states:

SupposeG(y1, ..., yJ) is non-negative, homogenous-of-degree-1 function of (y1, ..., yJ) >

0. Suposse limyi→∞G(y1, ..., yJ) = +∞ for i = 1, ..., J . Suppose for any dis-

tinct (i1, ..., ik) from {1, ..., J} , ∂kG/∂yi1 ...∂yik is non-negative if k is odd and

non-positive if k is even. Then Pi = eViGi(e
V1 , ..., eVJ )/G(eV1 , ..., eVJ ) defines a

probabilistic choice model from alternatives i = 1, ..., J which is consistent with

utility maximization.

To prove this theorem, following McFadden (1978), first of all we have to show function

F (ε1, ..., εJ) = e−G(e−ε1 ,...,e−εJ ) is a multivariate extreme value distribution, or the distribution

of the maximum values. Then, showing the choice probabilities generated by such distribution

correspond to Pi = eViGi(e
V1 , ..., eVJ )/G(eV1 , ..., eVJ ), where Vi is the utility, would prove Pi

are the choice probabilities that maximize the utility function for each alternative when ε
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follows an extreme value type I distribution.

If εi → −∞, then eεi → +∞, G(·) → +∞ and F → 0. If (ε1, ..., εJ) → +∞, then

(eε1 , ..., eεJ )→ 0, G(·)→ 0 and F → 1. Differentiating F we have:

∂F

∂ε1

= e−G(e−ε1 ,...,e−εJ ) ∂G

∂ε1

e−ε1 = Fe−ε1
∂G

∂ε1

.

A cross derivative of F, after rearranging terms, would be given by:

∂2F

∂ε1∂ε2

= e−ε1
[
F

∂2G

∂ε1∂ε2

+
∂F

∂ε2

∂G

∂ε1

]
= e−ε1e−ε2e−G(e−ε1 ,...,e−εJ )

[
∂G

∂ε1

∂G

∂ε2

− ∂2G

∂ε1∂ε2

] (15)

Now, let Q1 = G1 = ∂G
∂ε1

and Qk = Qk−1Gk − ∂Qk−1/∂Yk, then ∂F/∂ε1 = FQ1e
−ε1 and

∂k−1F

∂ε1...∂εk−1

= e−ε1e−ε2 ...e−εk−1Qk−1F.

Notice if Qk−1 is non-negative, given Gk is non-negative by assumption, then Qk−1Gk is

non-negative. Each term in ∂Qk−1/∂Yk is non-positive because one term in the derivative

has increased in order, therefore:

∂k−1F

∂ε1...∂εk−1

> 0,

and F is a cumulative distribution. Now consider the case i = 1, 2 and ε2 = +∞, then given

the homogeneity of degree 1 of G:

F = e−G(e−ε1 ,e−ε2 ) = e−G(e−ε1 ,0) = e−G(e−ε1 ) = e−a1e
−ε1 ,

where a1 = G(1, 0). More generally, for j 6= i if εj = +∞, then:

F = e−aie
−εi ,
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where ai = G(0, ..., 0, 1, 0..., 0) with 1 in the i-th place and this is the univariate extreme value

distribution. Hence, F is a multivariate extreme value distribution. Having proved F denotes

the cumulative distribution of maximum values, we turn to the probabilities generated by

this distribution.

Assuming the utility function is ui = Vi+εi where (ε1, ..., εJ) is distributed F . The probability

of choosing the first alternative is:

P1 =

∫ +∞

ε=−∞
F1(ε, V1 − V2 + ε, ..., V1 − VJ + ε)dε

=

∫ +∞

ε=−∞
e−εQ1Fdε

=

∫ +∞

ε=−∞
e−εG1(e−ε−V1+V2 , ..., e−ε−V1+VJ )e−G(e−ε,e−ε−V1+V2 ,...,e−ε−V1+VJ )dε

Recall G(y1, ..., yJ) is an homogeneous-of-degree-1 function of (y1, ..., yJ) by assumption and

thereforeGk(y1, ..., yJ) is an homogeneous-of-degree-0 function of (y1, ..., yJ), then

=

∫ +∞

ε=−∞
e−ε
(
e−ε
)
G1(eV1 , eV2 , ..., eVJ )e−(e−εe−V1)G(eV2 ,...,eVJ )dε

=

∫ +∞

ε=−∞
e−εG1(eV1 , eV2 , ..., eVJ )e−(e−εe−V1)G(eV1 ,eV2 ,...,eVJ )dε

= eV1G1(eV1 , eV2 , ..., eVJ )/G(eV1 , eV2 , ..., eVJ ).
(16)

Since the expression for the choice probability above can be done for every alternative and

equals the probability in the theorem statement, then it is proved that choice probabili-

ties generated by the extreme value distribution are consistent with the theory of utility

maximization.

Knowing utility is maximum under the assumption ε follows a extreme value type I distribution,

we can aggregate over the distribution of consumer characteristics (in this case, income) to

find product’s j market share.

sj =

∫
y

sijdPy. (17)

These market shares and their derivatives with respect to prices enter the first order conditions

of the firms’ profit maximization problem, closing the simultaneity of supply and demand.
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3 Structural demand models

Structural demand models in NEIO are designed to characterize imperfectly competitive

markets. Although, there are many models we do not address in this document (e.g., auctions

models), we focus on the ones that rely on the economic assumptions outlined in the previous

section to attain identification strategies and estimate the first order conditions of the

firms’ profit maximization problem and the consumer’s indirect utility function. Estimation

strategies depend on the type of data that is available for the researcher. Since micro data or

consumer-level data is usually unavailable, most estimation techniques have been developed

in the context of aggregated or product-level data. To our knowledge, the most main article

in this subject is the one by Steven Berry, James Levinsohn, and Ariel Pakes (BLP) published

in 1995 in Econometrica. This study sets the base for estimation of a random coefficients

discrete choice model that maps consumer’s decision choices and firms’ pricing strategies to

product-level data. This section is dedicated to the description and analysis of the model

proposed by BLP.

Consumer i’s utility after choosing the product j available in market t be defined as:

uijt = αif(yit − pjt) + xjtβi + ξjt + εijt, (18)

where yit is the consumer’s income, pj is the price of the product and xjt and ξjt denote,

respectively, observable and unobservable (by the researcher) characteristics of the product.

The term εijt represents the random shock to her utility which is assumed to follow a Type I

Extreme Value distribution.

The assumed specification for f(·), which determines how available income2 is introduced in

the indirect utility, can take any functional form that maintains the regularity assumptions

of consumer preferences. This specification choice, however, has important consequences on

how income determines consumer choices. Consider the case in which available income enters

the indirect utility function linearly as f(yit − pjt) = yit − pjt. As we show later, income in

this case will have no linear effect that can be distinguished from the model’s constant and

2Defined as the difference between income and price
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hence vanishes from the utility specification. The economic intuition, on the other hand,

suggests that the vanishing linear effect of income means product market shares are not

linearly increasing in income. In other words, income does not shift the indifference curve to

the right. However, if product observable characteristics are allowed to interact with income,

then income does affect the slope of the indifference curve and moves the optimal product

choice along the same level of indirect utility. Now consider the case available income enters

the indirect utility function in logarithms as f(yit − pjt) = log(yit − pjt). Income effects in

this case do not vanish from the utility specification and will both shift the indifference curve

and change the optimal product choice.

Deciding on the functional form of the available income depends on the market being analyzed.

If the researcher believes income effects are important when choosing a product from the

market, then a functional form where income does not vanishes from the indirect utility level

should be considered. This might be the case of markets such as the automobiles market,

computers market, digital cameras market, etc. On the other hand, if income effects are

really not as important as perhaps other consumer characteristics then it would be suitable

to specify a linear functional form. This might be case in markets such as the ready-to-eat

cereal market or the carbonated soft drinks market.

The distribution of coefficients over consumers in the indirect utility function is captured

with interactions between the consumers’ observable and unobservable characteristics with

product prices. These interactions make up the random coefficients discrete choice model

with which we began this section. The decision on which product observable traits to interact

with consumer characteristics is also up to the researcher. In our specification all marginal

utilities are allowed to vary over consumers (αi, βi), but it is also common to estimate only

the mean price marginal utility (α) and leave the rest to vary over consumers. Specifically,

random coefficients are defined as follows:

(
αi
βi

)
=

(
α

β

)
+ (Σvi + ΠDit), (19)

where Dit is a d×N matrix of demographic variables, vi is a mean zero normal variable of
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dimensions (K + 1)×N with identity covariance matrix, Σ is a (K + 1)× (K + 1) matrix

of coefficients, and Π is a (K + 1) × d vector of coefficients, where N is the number of

simulated consumers, K the number of observable characteristics in xjt and d the number

of demographic characteristics. Individual heterogeneity generates a distribution for each

parameter characterized by a mean effect (first term of the right-hand side of equation (19))

and a deviation from the mean which can be due to differences in demographic characteristics

or to the variance of the standard normal effect (second term of the right-hand side of equation

(19)).

We can rewrite the indirect utility function as the sum of characteristics that vary over

terminals and their interactions with consumer traits, as:

uijt = δjt + µijt + εijt (20)

where mean utilities are:

{
δjt = xjtβ − αpjt + ξjt if price is linearly separable from income

δjt = xjtβ + ξjt otherwise
(21)

And deviations from the mean utilities are:
µijt = pjt(σpvip + π1

pDi1t + · · ·+ πdpDidt)

+
∑K

k=1 xjkt(σkvik + π1
kDi1t + · · ·+ πdkDidt) if price is linearly separable from income

µijt = f(yit − pjt)(α + σpvip + π1
kDi1t + · · ·+ πdkDidt)

+
∑K

k=1 xjkt(σkvik + π1
kDi1t + · · ·+ πDk DiDt) otherwise

(22)

Besides the set of interior products (j = 1, ..., J), consumers can choose an outside option

(j = 0) which represents the possibility of not buying any of the interior products. Its indirect

utility level is given by:

ui0t = αif(yit) + ξ0t + σ0vi0 + εi0t. (23)

The existence of term σ0vi0 means we are allowing for the possibility of there being more

unobserved variance in the outside other than the inside alternatives. Also, since αif(yit) is
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common to all models and can not be identified from the model’s constant, this is the same

as normalizing the outside option’s mean utility to zero.

Consumer i chooses product j over all other available alternatives if uijt ≥ uilt ∀j 6= l.

Assuming, first, that there are no ties in utility; second, that consumers choose only one

option from the available set; and, third, that ε follows an extreme value type I distribution.

Then we can condition on the distribution of vik and Dit to integrate out the extreme value

distribution and obtain choice probabilities in a closed form fashion as in equation (24) below:

sijt(xjt, pjt, ξjt, Pv, PD; θ) =
exp(δjt + µijt)

1 +
∑J

l=1 exp(δlt + µilt)
, (24)

where Pv denotes the distribution of vik and PD the distribution of demographic characteristics.

Now let Aj be the set of consumers that choose product j. Market shares are the aggregation

of choice probabilities over Aj as equation (25) shows.

sjt(pjt, xjt, ξjt, Pv, PD; θ) =

∫
Aj

sijtdPvdPD. (25)

Even if income and price are not linearly separable, one can assume income draws are lognormal

and express their distribution as exp(mt + σyt v
y
it) where mt is the average income in market t,

σyt is the standard deviation, and vyit ∼ N(0, 1). The two parameters of the distribution of

income draws can be estimated, for example, from household surveys. Therefore, the only

variable that generates variation across consumers is the standard normal effect vyit which we

include in Pv assuming v = (vi1, vi2, ..., vik, v
y
i ) are independent. This means equation (25)

serves for the cases where income and price are linearly separable and where they are not.

Recall from equation (7), the second parameter of demand that enters the pricing equations

in the first order condition of the firm’s problem are the derivatives of demand with respect

to prices. The actual demand for product j in market t, qjt, can be expressed as the product

of its market share sjt and the size of the potential market Mt:

qjt(pjt, xjt, ξjt, Pv, PD; θ) = Mtsjt(pjt, xjt, ξjt, Pv, PD; θ). (26)
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Thus, derivatives of demand with respect to prices are the same as derivatives of market

shares with respect to prices. Even if the joint estimation of supply and demand is not

carried out, estimating price derivatives is fundamental to obtain the matrix of cross price

elasticities. The price derivatives of market shares are shown in equation (27). The first line

of the equation shows the own-price derivatives and the second line the cross-price derivatives.

Own-price derivatives (in absolute value) are a measure of the amount of consumers that

substitute away from product j when its price increases. Multiplying these expressions by

pjt/sjt yields price elasticities:

∂sjt
∂pjt

=−
∫
Aj

sijt(1− sijt)(dµijt/dpjt)dPvdPD

∂sjt
∂plt

=

∫
Aj

sijtsilt(dµijt/dplt)dPvdPD

(27)

Up to this point, estimation of the structural model is equivalent to estimating α, β,Σ,Π, ξjt.

If we introduce the supply side, the number of parameters to estimate increases but so does

the observed variability used for identification.

After estimating price derivatives and market shares, we can recover marginal costs for

each firm in the market as explained below. Assume there are F firms in the market, each

producing a subset Ff of the set of interior products. The firms’ problem is:

max
pjt

∑
j∈Ff

(pjt −mcjt)Mtsjt, (28)

which yields the next first order condition:

sjt +
∑
r∈Ff

(prt −mcrt)
∂srt
∂pjt

= 0. (29)

Let,

Ω =

{
−∂srt
∂pjt

if f produces both r and j

0 o.w

}
. (30)

Rewriting the first order conditions in matrix form and rearranging terms, we obtain an
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expression for price markups, which depends only on demand parameters already derived

from the model (price derivatives and market shares):

b = p−mc = Ω−1sjt. (31)

Therefore, marginal costs can be recovered from the model as the difference between observed

prices and estimated markups, and then we can estimate a cost function for each producer as

in equation (32) below:

mcjt = pjt − bjt = wjtγ + ωjt (32)

Any functional form for the marginal cost is also attainable if certain conditions hold like

cost convexity. One could be interested, for instance, in estimating a logarithmic regression.

Other specifications of the cost function like allowing for non-constant returns to scale or

capturing risk aversion are yet to be studied.

3.1 A note on price elasticities and substitution to the outside

option

To obtain own-price elasticities we should multiply the first line of equation (27) by pjt/sjt

and to obtain cross-price elasticities we multiply the second line of the same equation by

pkt/sjt. The resulting matrix with elements (i, j) where i denotes the row and j the column

will indicate the percentage variation in the demand for good i when the price of good

j increases by 1%. However a 1% increase in the price of good j can be higher or lower

in magnitude than a 1% increase in the price of another good, making price elasticities

difficult to compare among products. One way of accounting for differences in magnitude is

reporting price semi-elasticities, which indicate the percentage variation in the demand for a

good when its own price or the price of other goods increase by x dollars. Obtaining price

semi-elasticities consists of multiplying each line of equation (27) by x/sjt. So, for example,

if prices are measured in thousand dollars and x = 2, then each element of the resulting price

semi-elasticities matrix should be interpreted as the percentage variation in demand when

prices increase by 2,000 dollars.
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The substitution to the outside option is also an important measure of demand sensitivity.

Deriving reasonable substitution patterns to the outside is non trivial given we do not observe

its price nor its characteristics. In fact since the observable characteristics of the outside

option are assumed to be zero, it is not reasonable to obtain substitution patterns to the

outside in the same fashion as with price elasticities between interior products. Berry et al.

(1995) report an alternative measure of substitution to the option defined as:

100× (ds0t/dpjt)

|dsjt/dpjt|
. (33)

This expression measures the number of consumers that substitute away to the outside

option as a percentage of total consumers who substitute away from product j when its price

increases. The numerator includes changes in the outside option’s market share when price

j changes and the denominator is the absolute value of the own-price derivative of good j.

Given consumers are assumed to buy one unit of the product from which they derive the

highest utility, equation (33) can be interpreted as the percentage of consumers that go to

the outside option.

4 Estimation

The integral of choice probabilities over Aj has no analytic solution and therefore has to

be solved numerically. Numeric aggregation consists of making ns random draws from the

distribution of v and then averaging to obtain market shares such that limns→∞ Pns(v) →

Pv(v), where Pns is the numerical approximation. The usual approximation employed is the

following:

sjt(pjt, xjt, ξjt, Pns, PD; θ) ≈ 1

ns

ns∑
i=1

sijt. (34)
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It is worth mentioning also that the same numeric approximation has to be taken for the

computation of price derivatives:

∂sjt
∂pjt

≈− 1

ns

ns∑
i=1

sijt(1− sijt)(dµijt/dpjt)

∂sjt
∂plt
≈ 1

ns

ns∑
i=1

sijtsilt(dµijt/dplt).

(35)

Now, define θ1 = (α, β) and θ2 = (Σ,Π). Conditional on θ2, estimation of the linear

parameters in θ1 consists of minimizing the distance between observed market shares and

predicted market shares:

min
θ1
||sjt(pjt, xjt, ξjt, Pns, PD; θ2)− sjt||. (36)

Inversion of this minimization strategy conditional on θ2, yields the contraction mapping

suggested by BLP. This contraction mapping converges to a fixed point solution in the vector

of average utilities that equal observed to predicted market shares:

δ
′
= log(sjt)− log(sjt(pjt, xjt, ξjt, Pns, PD; θ)) + δ. (37)

Setting the seed for δ in the first iteration, subsequent iterations update this vector based

on the difference between the log of observed market shares sjt and the log of predicted

market shares sjt(pjt, xjt, ξjt, Pns; θ) until convergence. After obtaining the vector of mean

utilities, the regression model in equation (21) allows us to obtain estimates for the mean

marginal utilities in θ1 associated to each product’s observable characteristics as well as

the demand-side unobservable ξjt. Even though product differentiation is captured by the

observable characteristics [pjt, xjt] and the unobservable ξjt, the only element that sets this

model apart from the homogenous products case, conditional on [pjt, xjt], is ξjt.

Using ordinary least squares for the regression model in (21) would result in biased estimates

of θ1 because price is an endogenous variable. For example, if residuals in ξjt capture product

quality, which is unobserved by the researcher, then higher prices are correlated with higher
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values of ξjt. Or if marketing efforts, which increase prices, also increase consumer average

utility, then we can expect corr(ξjt, δjt) > 0. This suggests instruments for price (zjt) must be

used in order to obtain unbiased estimates for θ1 and ξjt given the independence assumption

below:

E[ξjt|zjt] = 0. (38)

BLP mention optimal price instruments are: zjt,
∑

r 6=j,r∈Ff
zrt, and

∑
r 6=j,r /∈Ff

zrt. For instance,

if horse power is one of the observable characteristics of vehicles in the automobile market,

then optimal price instruments for vehicle j manufactured by firm f are: its horse power, the

sum of the horse power of the rest of automobiles manufactured by f , and the sum of the

horse power of all other automobiles not manufactured by f . Estimation techniques should

also depart from the OLS case to the instrumental variable regression case or two-stage least

squares.

After estimation of θ1, estimates of θ2 are obtained by minimizing a function of the model’s

errors. Notice these errors equal ξjt if only the demand-side is estimated, but equal [ξjt, ωjt]

if joint estimation of supply and demand is performed. For the latter case, ωjt is obtained

from the residuals of a regression of marginal costs on product observable characteristics and

instruments (as in equation (32)) given the following independence assumption:

E[ωjt|zjt] = 0 (39)

Marginal costs, on their hand, are obtained as the difference between observed prices and

markups computed from estimated market shares and price derivatives.

The description above makes it obvious that the distribution of ξjt and ωjt in the population has

the mean independent properties of (38) and (39). Moreover, assumingE[(ξjt, ωjt)
′(ξjt, ωjt)|zjt]

is finite, then θ2 can be chosen as the value that minimizes the equivalent sample moment

conditions up to a constant:

θ2 = argmin

(
ξ(θ2, Pns, sjt)
ω(θ2, Pns, sjt)

)′
ZWZ ′

(
ξ(θ2, Pns, sjt)
ω(θ2, Pns, sjt)

)
, (40)
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where Z is the matrix of instruments and W is a weighting identity matrix.

Joint estimation of supply and demand can be summarized in the following steps:

1. For a vector of θ2:

(a) Set the seed for δ and build the matrix for µijt.

(b) Compute the fixed point algorithm in (37) to obtain the vector of δ that equals

observed to predicted market shares. In this step it is crucial to hold fixed the

simulation draws from Pns(v) as the parameters change, or otherwise changes in

the objective function would be due to changes in simulation.

(c) Compute ξjt from a regression of δ on product observable characteristics and

instruments.

(d) Compute market shares as in equation (34) and price derivatives as in equation

(35).

(e) From predicted market shares and price derivatives, compute markups as in

equation (31) and recover marginal costs.

(f) Compute ωjt from a regression of marginal costs on product observable character-

istics and instruments.

2. Compute the value of the Generalized Method of Moments (GMM) function in equation

(40).

3. Repeat (1) and (2) for different values of θ2 until the GMM function is minimized.

If only the demand-side is to be estimated, then the process is the same as above except for

step (f), and the GMM function would be (Z ′ξ(θ2, Pns, sjt))
′W (Z ′ξ(θ2, Pns, sjt)).

4.1 The variance of the GMM estimator

The asymptotic variance-covariance matrix for the GMM estimator is (see Berry et al. (1995)):

V̂ (β̂GMM) = (D′ZZ ′D)−1(D′ZSZ ′D)(D′ZZ ′D)−1, (41)

where Z is the matrix of instruments and D is the Jacobian of the moment conditions with

respect to θ1 and θ2. For the linear parameters in θ1, the derivatives equal xjt but for the
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nonlinear parameters in θ2 derivatives must be calculated as:

∂δjt
∂θ2

=

(
∂sjt
∂δkt

)−1(
∂sjt
∂θ2

)
, (42)

where:
∂sjt
∂δjt

=
1

ns

ns∑
i=1

sijt(1− sijt)

∂sjt
∂δlt

=
1

ns

ns∑
i=1

sijtsilt

∂sjt
∂σk

=
1

ns

ns∑
i=1

viksijt

(
xjkt −

J∑
k=1

xjktsijt

)
∂sjt
∂πd

=
1

ns

ns∑
i=1

Didtsijt

(
xjkt −

J∑
k=1

xjktsijt

)
. (43)

the term S, on the other hand, is the sum of the model’s errors: the estimation error, the

simulation/sampling error. The first arises due the variance in data across products and

the second due to the sampling of consumers and the simulation from the distribution of

unobserved consumer traits needed to compute the fixed point in the contraction mapping

for δ. Failing to account for the second would yield in underestimated standard errors for

the demand-side parameters. Since simulation errors enter the inversion for δ a non-linear

way, they get worse as market shares get small. The problem is even more worrying when

the number of products is large, in which case a small simulation error in the computation

of market shares will cause large changes in ξ. To see why this happens, notice that in the

random coefficients logit model each product is a substitute of all the rest of products in

the market. Thus, when ξj decreases, consumers who substitute away from product j will

distribute among the rest of products and, as the number of products increase, the number

of consumers that go to each alternative also tends to zero, formally this implies ∂s/∂ξ → 0.

Now, given the sampling error is in the shares, a measure of the impact of the sampling error

on the GMM function is ∂ξ/∂s. So when the number of products increases and the elements

of ∂s/∂ξ tend to 0, the elements in ∂ξ/∂s will tend to grow large. One way to control for the

impact of the sampling error is to increase (quadratically) the number of consumer samples

as the number of products increase. Berry et al. (2004) provide a detailed description of
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the asymptotic distribution of the GMM estimators. In particular, they show estimators in

the context of the random logit coefficients are consistent if J log(J/N) tend to zero as J

increases, but are asymptotically normal if N grows as the square of the growth in J .

Rewriting the structural unobservable element in terms of the three sources of error in the

GMM function we have:

ξ(sn, Pns; θ) = ξ(so, Po; θ)︸ ︷︷ ︸
Data-driven error

+ {ξ(sn, Pns; θ)− ξ(so, Pns; θ)}︸ ︷︷ ︸
Sampling error

+ {ξ(so, Pns; θ)− ξ(so, Po; θ)}︸ ︷︷ ︸
Simulation error

= ξ(so, Po; θ) + {sn − so}︸ ︷︷ ︸
εn

+ {s(ξ, Pns, so; θ)− s(ξ, Po, so; θ)}︸ ︷︷ ︸
εns

,

(44)

where so are the true market shares, sn are the observed market shares, Po is the true distri-

bution of v, Pns is the simulated distribution of Po making ns random draws, s(ξ, Pns, so; θ)

are the predicted market shares over Pns and s(ξ, Po, so; θ) are the predicted market shares

over Po.

Recall the contraction mapping for the computation of ξ is sn = s(ξ, Pns, so; θ), then from

equation (44) we can express it as:

so + εn − εns = s(ξ, Pns, so; θ), (45)

and then obtain expressions for εn and εns in terms on ξ using the following matrix:

H−1(ξ, P ; θ) =

{
∂s(ξ, P ; θ)

∂ξ′

}−1

. (46)

Thus,

ξ(sn, Pns; θ) ≈ ξ(so, Po; θ) +H−1
o {εn − εns}, (47)

where

Ho = H(so, Po; θo). (48)

Since there is no easy expression for Ho we approximate it with H as defined by the inverse

matrix of equation (46) and then define the variance S of the GMM estimator as the sum of
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the following three terms representing the variance of the data-driven error, the sampling

error and the simulation error, respectively3:

S1 =
1

J

J∑
j=1

zjz
′
jξ

2
j , S2 =

1

nJ
z′H−1V2H

−1′z , and S3 =
1

ns J
z′H−1V3H

−1′z, (49)

where V2 = Sn − sns′n with Sn = diag(sn), V3 = 1
ns

∑ns
r=1 εrε

′
r, and the derivatives in H are:

∂sj(ξ, P ; θ)

∂ξk
=

{ ∫
sj(1− sj)dPns(v) j = k
−
∫
sjskdPns(v) k 6= j

(50)

Usually sn is build from total sales data where n is so large that the sampling variance S2

would have little impact on the GMM estimator. The standard errors of parameters in θ1

and θ2 are the square root of the diagonal of matrix V̂ .

For a final note on the variance of the GMM estimator, Berry et al. (2004) also mention

that the traditional bootstrapping estimator for the standard errors is not well defined in

the context of a random logit coefficients for mainly two reasons: the first is that bootstrap

must be done over a sample of exogenous characteristics; but only after making some (strong)

assumptions on the equilibrium we can move on to a different sample that can be used in

estimation. The second is that such equilibrium assumption would have to yield a unique

equilibrium vector of prices and market shares and uniqueness is not a property of the

assumed Nash-Bertrand price setting.

4.2 The Logit demand

Let us now consider the case of a model with no interactions between product observable

characteristics and consumer traits. The indirect utility function for inside alternatives

reduces to:

uijt = xjtβ − αpjt + ξjt + εijt = δjt + εijt, (51)

3The reader can refer to Berry et al. (2004) for understanding of how S1, S2 and S3 are obtained as function
of the model primitives.
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and for the outside option it is:

ui0t = ξ0t + εi0t. (52)

Since there is no individual heterogeneity, the probability of choosing product j equals its

market share. So under the assumption ε follows an extreme value type I distribution, market

shares are given by:

sjt(pjt, xjt, ξjt; θ1) =
exp(δjt)

1 +
∑J

l=1 exp(δlt)
, (53)

and their derivatives with respect to prices amount to the following expressions:

∂sjt
∂pjt

=− αsjt(1− sjt)

∂sjt
∂plt

=αsjtslt.

(54)

In this case, the minimization of distance between observed and predicted market shares has

an analytical solution for δ. Since the quotient between predicted market shares and the

outside option’s market share is equivalent to exp(δjt) as shown below:

exp(δjt) ≡
exp(δjt)

1 +
∑J

l=1 exp(δlt)
/

1

1 +
∑J

l=1 exp(δlt)
. (55)

Then, taking logs on both sides of the equation yields the following solution for δjt:

δjt ≡ log(sjt)− logs0t . (56)

Estimation of log(sjt) − logs0t on xjt, pjt and price instruments allows us to recover the

product unobservable ξjt, and then we can include estimates of price derivatives and market

shares within the pricing equations in the supply side to obtain estimates for γ and ωjt,

completing the estimation of the model without interactions.

Although computation of a model without interactions is simpler than the full model of the

previous section, this simplicity comes at a cost: substitution patterns (or price elasticities)

generated by the logit demand are somewhat misleading because depend only on market

shares but not on product observable characteristics. Price elasticities of demand in the
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case of a model without interactions, would suggest products with similar market shares

would have the same cross price elasticity with respect to a third product even if they differ

significantly in their observable characteristics. Consider the market of automobiles. Suppose

the Nissan Sentra and the Chevrolet Captiva have the same market share. One could expect

cross price elasticities of the Nissan Sentra with respect to a Honda CRV to be lower than

cross price elasticities between the Captiva and the CRV just because Captiva and CRV are

trucks while Sentra is sedan. However, the logit demand would show cross price elasticities

with respect to the CRV are the same for Captivas and Sentras, which is not reasonable.

Substitution patterns in the model without interactions would also suggest products with the

same market share would have the same own-price elasticity, this implies such products have

the same price-cost margins, which is not necessarily true. Furthermore, if the market share

of the outside option is large relative to the rest of products, then the logit demand will yield

downward biased estimates of the price cross elasticities between interior products.

In terms of the substitution patterns to the outside option denoted by equation (33), the

logit demand will yield:

100× (ds0t/dpjt)

|dsjt/dpjt|
= 100× s0t/(1− sjt),

because

ds0t/dpjt = αs0tsjt and |dsjt/dpjt| = αsjt(1− sjt).

Experiences so far also show the number of inelastic individual demands after estimating a

model without interactions is larger than with the full model (Berry, 1994; Berry and Pakes,

1993). Demand elasticity is crucial when conducting counterfactual scenarios. The researcher

must consider the trade-off between computational time and interpretability of results before

deciding on a logit demand.

4.3 A model with interactions

For the full model with interactions, we will provide further description of the indirect utility

specification and estimation presented in Nevo (2001) and Berry et al. (1995).
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4.3.1 Nevo’s specification

Nevo’s application to the ready-to-eat cereal market focuses on measuring market power

through market shares and price-cost margins under three scenarios: full price collusion,

multi-product firm pricing, and single-product firm pricing. The author uses the following

indirect utility specification:

uijt = xjtβi − αipjt + ξj + ∆ξjt + εijt.

Notice this function is the same as the one outlined in section (3) already taking into account

that the linear effect of income on the indirect utility level vanishes as it is common to

all options available to the consumer. The extra term in the indirect utility, ∆ξjt, arises

because the author uses brand-specific dummy variables in the regression model for δjt.

These dummies capture the fixed effect of ξj and, thus, the error term in the regression are

the deviations from the brand-specific average utility in every city-quarter (markets). The

definition of αi and βi are the same as in section (3). Although the linear effect of income

vanishes from the indirect utility, the author captures its non linear effect by including income

and squared income in the matrix of demographic characteristics, D, besides age and the

number of children.

The price derivatives that this model generates are given by:

∂sjt
∂pjt

=−
∫
Aj

αisijt(1− sijt)dPvdPD

∂sjt
∂plt

=

∫
Aj

αisijtsiltdPvdPD.

Since dµijt/dpjt = σpvipt + π1
pDi1t + · · ·+ π4

pDi4t and dδjt/dpjt = −α.

From the supply side, the author estimates a linear regression for the marginal cost as shown

in the previous section. After jointly estimating the structural parameters for the demand-side

and the supply-side using the observed structure for Ω in the firms’ first order condition, the

author conducts two counterfactual scenarios: one in which he assumes all firms collide, thus
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Ω is a squared unit matrix of size J :

Ω = JJ .

And another in which he assumes each product is manufactured by a single firm, thus Ω is

an identity matrix of size J :

Ω = IJ .

4.3.2 BLP’s specification

The application of Berry et al. (1995) to the automobiles market focuses on finding reasonable

structural parameters for price-cost margins, elasticities, and variable profits, comparing

different specifications for the pricing equations in the supply-side. The authors use the

following indirect utility specification:

uijt = α log(yi − pjt) + xjtβi + ξjt + εijt,

where

βi = β + σvit.

In this case, individual heterogeneity is modeled only through the standard normal effect vit.

They do not include consumer demographic characteristics other than income, which also

interacts in a special way with price. Since income and price are not linearly separable, as in

Nevo’s application, the average utility and the deviation from that average are:

δjt =xjtβ + ξjt

µijt =α log(yi − pjt) +
∑
k

σkxjktvik.

Therefore, price only directly impacts the utility distribution through its variance but is not

included in the regression model for δjt.
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The indirect utility of the outside option is:

ui0t = α log(yi) + ξ0t + σ0vi0 + εi0t.

Notice that since market shares depend on differences in utility Prob[uijt − ui0t > 0], the

outside option’s indirect utility ends up subtracting from the indirect utility of inside goods.

In the estimation this amounts to normalizing ui0t to zero and capturing σ0vi0 with an

interaction between the model’s constant and vi. In other words, α log(yi) ends up being

common to all products but income is allowed to have a differential effect on the purchase

probabilities of inside goods.

Even though α log(yi) is not common to all options because income and price are not linearly

separable, which is an important conceptual difference with respect to the model outlined

in section (3), normalization has the same implications over the logit purchase probabilities

as before. In other words, income is allowed to have a differential effect over the purchase

probabilities of interior goods.

One of the main questions that arise from the analysis of this utility specification is what

happens when price is greater than income, indetermining the first term of the indirect utility

function. A negative available income only suggests a consumer will derive no marginal utility

from income after buying such product. This effect is the same as making the logarithm

in the first term of the equation as negative as possible, some suggest using a taylor series

expansion for the natural logarithm for it to defined in the (−∞,∞) domain. To correct for

such cases afterwards in the estimation, the authors use an importance sampling estimator to

derive market shares. The importance sampling estimator consists of making draws from the

distribution of v and accepting them with probability f t(v, θ) =
∑J

j=1 sijt. Then the vector

of predicted market shares would be:

sj(pjt, xjt, ξjt, Pns; θ) =
ns∑
i=1

st

f t(v, θ)
sijt(pjt, xjt, ξjt, Pns; θ), (57)

where st = 1− s0t and the sum is over accepted draws. This procedure oversamples from the

region of Pns from which consumers are more likely to buy a car and then weights choice
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probabilities by the inverse sampling weights to obtain market shares.

The derivatives of demand with respect to prices for this model are:

∂sjt
∂pjt

=− α
∫
Aj

1

yit − pjt
sijt(1− sijt)dPv

∂sjt
∂plt

=α

∫
Aj

1

yit − pjt
sijtsiltdPv.

Notice how prices can enter the indirect utility level in any functional form (for example, the

reader can imagine including log(pjt) instead of pjt in the regression for δjt) but derivatives

must also reflect so. From the supply side, the authors estimate a log-log regression for the

marginal cost as in the equation below:

log(MCjt) = log(xjt)γ + ωjt.

In some cases, including log(qjt) as a regressor also.

4.3.3 Interpreting results

Estimation of the full model with interactions yields parameter estimates for α, β, Σ, Π, ξjt,

γ, ωjt, and ∂sjt/∂pjt. All the parameters that are estimated from the regression model for δjt

are the mean marginal utilities of each of the products’ observable characteristics. If income

and price are linearly separable, then α is expected to have negative sign suggesting marginal

increases in prices generate marginal reductions in the utility level. β would be the vector of

marginal utilities for each characteristic in xjt but the expected sign depends on the intuition

on which characteristics are associated to greater choice probabilities.

More interesting are the interpretations of the deviations from the average utility. If coefficients

in vector Σ are significant, then variations in the product observable characteristics that

interact with consumer traits affect the variance of the utility distribution. In terms of the

substitution patterns, this implies that if a product with certain trait x increases its price,

then consumers will tend to substitute disproportionately to other products with similar

traits. Recall the discussion about the substitution patterns implied by the logit demand
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and consider again the case of the automobiles market. Significant coefficients in Σ means

cross price elasticity between the Chevrolet Captiva and the Honda CRV will be greater

than the one between the Nissan Sentra and the Honda CRV because the type of vehicle

(trucks or sedans) would have a significant effect on the variance of the utility distribution.

If coefficients in Σ were not significant, this would be the same as having a model without

interactions, i.e, consumers would substitute away from the Chevrolet Captiva to the Nissan

Sentra in the same magnitude they substitute towards the Honda CRV after a price increase

of the Captiva. Since Σ captures deviations from the average utility, its sign must be positive.

Minimization of the GMM function can be constrained to the region of semi-positive values

for Σ in order to obtain estimates of the expected sign.

The coefficients in Π capture the part of the variation of the marginal utilities due to differences

in observable demographic characteristics. Consider the case of the ready-to-eat cereal market.

Suppose the grams of sugar per serving size is one of the product observable characteristics

and age one of the consumer traits included in Dit. A negative and significant coefficient

associated to the interaction between these two variables would suggest the marginal utility

for sugar grams in a serving size is decreasing with age. If the coefficient is insignificant from

zero, then age would have no effect on the distribution of the marginal utility. In other words,

an adult and a child would perceive the same level of utility from an additional gram of sugar

per serving size conditional on vi. The expected sign of the coefficients in Π also depend on

the intuition or anecdotal evidence from the market.

In the case of substitution patterns or price elasticities, an element (i, j) of matrix (∂sjt/∂plt)×

(plt/sjt), where i denotes the row and j the column, indicates the percentage variation in

the quantity demanded of product i, when the price of product j increases 1%. In some

cases, price semi-elasticities are preferred for making comparisons because they represent

percentage variations in demand over price increases of the same magnitude across products.

For example, if prices are measured in 1,000 dollars, then the expression (∂sjt/∂pjt)× (1/sjt)

would be the demand sensitivity over price increases of a thousand dollars.

Sensitivity of the outside option’s market share to the price of interior goods is also an

important measure. Recall the absolute value of own-price elasticities represents the amount
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of consumers that substitute away from a product when its price increases. Then, the quotient

between ∂s0t/∂pjt and |∂sjt/∂pjt| would be the amount of consumers that go to the outside

option as a proportion of all consumers that substitute away from product j when its price

increases.

5 Counterfactual analysis

One of the main properties of structural models in economics is that they allow the researcher

to conduct counterfactual scenarios, i.e, to compute the market equilibrium under market

conditions that differ from the ones that are observed in the data. In particular, the structural

demand model we have described permits finding equilibrium prices and shares that would

have resulted in the following scenarios to name a few:

• A new product is introduced in the market.

• An existing product is eliminated from the market.

• Firms merge.

• Merged firms separate.

• Product characteristics’ change.

• Government imposes a per-unit tax.

Overall, counterfactuals are used to evaluate any kind of policy whether it affects the demand

or the supply side. In this section of the document we will focus on how counterfactual

scenarios are computed. First lets consider the case of counterfactuals that affect the supply

side. For instance, the ones estimated in Nevo (2001). The competitive structure of a market

is captured by matrix Ω. Estimation of the effects of mergers or merger dissolutions must rely

on changing the structure of this matrix. Let the upper script C denote the counterfactual

scenario and the upper script O the observed scenario. The pricing equation under the

counterfactual is:

bCjt = pCjt −mcOjt = (ΩC)−1sCjt.

The equation above is built upon the assumption marginal costs do not change in the
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counterfactual. This assumption has strong implications on how the market updates with

the variation in the competitive structure. It implies firms in the counterfactual do not

experience cost reductions nor cost increases after the merger or after the dissolution. Another

underlying assumption is that the structural parameters estimated with the observed market

conditions (α, β, Σ, Π, ξjt, ωjt) remain fixed in the counterfactual, which also suggests firms

do not incur in marketing efforts that could change consumer preferences over certain product

characteristics. This last assumption, however, is crucial for the computation of the market

equilibrium.

Since market shares in the counterfactual depend on prices and, at the same time, prices

charged in the counterfactual are obtained from price derivatives of demand and market

shares, computation of equilibrium conditions will consist on finding the vector of prices that

equal demand and supply using the contraction mapping of equation (58).

p′ = mcO + ΩCsjt(p, xjt, ξjt, Pns, PD; θ). (58)

We begin by setting a seed for the vector of prices and predicting uijt. This implies predicting

δjt, adding ξjt to it, and then predicting µijt. Afterwards, we compute choice probabilities,

aggregate to obtain market shares, and estimate price derivatives to obtain the measure of

price-cost margin. We add the margins to the marginal cost and recover a new vector of

prices with which we repeat the procedure until convergence of prices.

Note the market equilibrium after an exogenous change in product characteristics results

in the same estimation procedure as above. If there is a new vector of characteristics xCjt,

this changes the vector of δjt, choice probabilities, and price derivatives, which result in new

price-cost margins and new prices. Then, prices must be updated in each iteration until

convergence:

p′ = mcO + Ωsjt(p, x
C
jt, ξjt, Pns, PD; θ). (59)

Also note the introduction of a new product or the elimination of an existing one results in a

change of matrix Ω, therefore amounting to the contraction mapping of equation (58). In

the former case, a new product must be modeled by assigning a vector of observable xjt, pjt
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and unobservable ξjt characteristics to it. Although assigning values for xjt only requires

knowledge or certain anecdotal evidence on where will the product lie on the distribution

of each x and assigning pjt requires knowledge of the pricing equation of the manufacturer,

what value of ξjt to assign is less straightforward. One of the most common approaches is to

assign the value of ξjt of the existing product that most closely resembles to its observable

characteristics. If there is no such product, then one could average the values of ξjt of the

products that the firm of the new good manufactures and assign the resulting measure to the

new product. Computing equilibrium prices and shares if the manufacturer is also an entrant

must rely in stronger assumptions, since, first, both xjt and Ω change in the counterfactual,

and, second, the researcher must decide not only on which value of ξjt to assign to the new

products but also on which value of ωjt to assign to the manufacturer’s marginal cost.

Now consider the case of a per-unit tax, τ , charged to the manufacturer. Equation (60) shows

how taxes affect the first order condition of the firm’s maximization problem. Although

it seems as if there was a pass-through of taxes to prices, the competitive structure of the

market might help alleviate proportional increases in prices due to taxation. Computation of

the counterfactual scenario consists of the same procedure outlined before.

p′ = (1 + τ)×mcO + Ωsjt(p, x
C
jt, ξjt, Pns, PD; θ). (60)

6 Welfare analysis

Policy evaluation is concerned with how consumer welfare and firm benefits vary between the

observed scenario and the counterfactual. There are several measures of consumer welfare

that include the equivalent variation and the compensating variation. Let eijt(qjt, pjt, yit) be

the expenditure function of consumer i in the observed scenario. The equivalent variation

represents the additional expenditure in which the consumer has to incur in order to reach

the level of welfare in the observed scenario under the equilibrium prices of the counterfactual.

EV = e(qjt, p
C
jt, y

C
it )− e(qjt, pjt, yit). (61)
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On the other hand, the compensating variation is a measure of the additional expenditure

the consumer has to incur in order to reach the level of welfare in the counterfactual under

the observed equilibrium prices:

CV = e(qCjt, p
C
jt, y

C
it )− e(qCjt, pjt, yit). (62)

Given the budget constraint is binding in the utility maximization problem, equations (61)

and (62) can be interpreted as the variation in consumer income necessary to keep the level of

welfare constant under different equilibrium conditions. Nonetheless, one of the assumptions

when computing counterfactual scenarios after estimation of the structural demand model, is

that marginal utilities remain fixed in the counterfactual. If the marginal utility of income

is fixed for every individual, i.e, there are no income effects, then the marshallian and the

hicksian demand curves overlap, so the compensated version of consumer surplus when choice

probabilities follow an extreme value type I distribution can be expressed as:

CVi =
log(

∑J
j=1 e

V O
ijt)− log(

∑J
j=1 e

V C
ijt)

αi
, (63)

where log(
∑J

j=1 e
V O
ijt) is the expected maximum utility in the observed scenario, log(

∑J
j=1 e

V C
ijt)

is the expected maximum utility in the counterfactual, and Vijt = δjt + µijt.

To prove log(
∑J

j=1 e
Vijt) corresponds to the expected maximum, suppose the utility of a

consumer of choosing product i is ui = Vi + εi and ε ∼ extreme value type I distribution.

The expected maximum utility following the notation of section (2.2.2) is:

u =

∫ +∞

ε̃=−∞
max
i

(Vi + εi)f(ε̃)dε̃,

which can be rewritten as:

u =
∑
i

∫ +∞

εi=−∞
(Vi + εi)Fi(Vi + εi − Vj)dεi

Let a = G(eV1 , ..., eVJ ). Given Fi(Vi + εi − Vj) = e−G(eVi+εi−Vj )Gi(e
Vi+εi−Vj)e−εi and G is
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homogeneous of degree 1 and Gi homogenous of degree 0, then:

Fi(Vi + εi − Vj) = e−ae
−Vi−εiGi(e

Vj)e−εi .

Now let Vi + εi = w, the expected maximum can be expressed as:

u =
∑
i

∫ +∞

w=−∞
we−ae

−w

Gi(e
Vj)e−weVidw

using Euler’s law
∑

i e
ViGi(e

Vj) = G(eVj) we have that

=

∫ +∞

w=−∞
we−ae

−w

G(eVj)e−wdw

=

∫ +∞

w=−∞
we−ae

−w

ae−wdw

which is the mean of the extreme value distribution e−ae
−ε

, hence:

= log a+ γ

where γ is Euler’s constant

(64)

Having proved log(
∑J

j=1 e
Vijt) corresponds to the expected maximum utility, aggregation over

the distribution of consumer characteristics yields the total compensating variation between

the observed scenario and the counterfactual in monetary terms:

∆C = M

∫
CVidPo(v) (65)

From the point of view of producers, changes in producer welfare can be computed as changes

in benefits between the observed and the counterfactual situations as shown in equation (66):

∆E =
∑
f

πOf − πCf =
∑
f

∑
j∈Ff

(pOjt − cmgOjt)MsOjt −
∑
j∈Ff

(pCjt − cmgCjt)MsCjt

 (66)
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Thus, changes in welfare from the societal perspective are:

∆S = ∆C + ∆E (67)

7 Programming

This section is devoted to the matrix-like notation that should be considered for programming

and estimation of the structural demand model of section (3), first, under linearly separable

income and prices as in Nevo (2001), and then under non separable income and prices as in

Berry et al. (1995).

7.1 Linearly separable income and prices: the case of Nevo

Suppose you have a matrix X of dimensions J × (K + 1) where K are the number of product

observable characteristics and the additional column vector stands for the model’s constant.

Allow pjt to be included in X so that it can be interacted with consumer traits as shown

further. vi is a matrix of dimensions (K + 1) × N where N are the number of simulated

consumers. Each row vector in vi is sampled from a standard normal distribution. Dit is a

matrix of d×N where d are the number of demographic variables over which consumers are

assumed to vary also. Now let Σ be a diagonal matrix of coefficients of size (K + 1)× (K + 1)

and Π a matrix of coefficients of size (K + 1)× d. If income and prices are linearly separable

in the function for available income, then computation of the contraction mapping for finding

δjt holding Σ and Π fixed at any value, consists of:

7.1.1 The demand-side

For every market:

1. Set the seed for δj for instance as a column vector of 1’s of dimensions J × 1.
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2. Build the matrix for µij as:

µij =


1 x1,1 x1,2 · · · x1,K

1 x2,1 x2,2 · · · x2,K
...

...
...

. . .
...

1 xJ,1 xJ,2 · · · xJ,K

×


σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σK+1

×


v1,1 v1,2 · · · v1,N

v2,1 v2,2 · · · v2,N
...

...
. . .

...
vK+1,1 vK+1,2 · · · vK+1,N



+


1 x1,1 x1,2 · · · x1,K

1 x2,1 x2,2 · · · x2,K
...

...
...

. . .
...

1 xJ,1 xJ,2 · · · xJ,K

×


π1,1 π1,2 · · · π1,d

π2,1 π2,2 · · · π2,d
...

...
. . .

...
πK+1,1 πK+1,2 · · · πK+1,d

×


D1,1 D1,2 · · · D1,N

D2,1 D2,2 · · · D2,N
...

...
. . .

...
Dd,1 Dd,2 · · · Dd,N


(68)

µijJ×N
=
(
xj,k

)
J×(K+1)

×
(
σk
)

(K+1)×(K+1)
×
(
vk,i

)
(K+1)×N

+
(
xj,k

)
J×(K+1)

×
(
πk,d

)
(K+1)×d ×

(
Dd,i

)
d×N

(69)

3. Add δj to µij to obtain uij:

uij =


1
1
...
1


J×1

× (1 1 · · · 1)1×N + µijJ×N
(70)

4. Attach a row vector of zeros to uij and exponentiate:

euj+1,i =


eu1,1 eu1,2 · · · eu1,N

eu2,1 eu2,2 · · · eu2,N
...

...
. . .

...
euJ,1 euJ,2 · · · euJ,N

e0 e0 · · · e0


(J+1)×N

(71)

5. Find the running column sums:

(
J∑
j=0

euj,1
J∑
j=0

euj,2 · · ·
J∑
j=0

euj,N

)
1×N

(72)

6. Divide each row vector of matrix euj+1,i into the expression of step (4) to obtain choice
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probabilities sj,i:

sj,i =



eu1,1∑J
j=0 e

uj,1

eu1,2∑J
j=0 e

uj,2
· · · e

u1,N∑J
j=0 e

uj,N

eu2,1∑J
j=0 e

uj,1

eu2,2∑J
j=0 e

uj,2
· · · e

u2,N∑J
j=0 e

uj,N

...
...

. . .
...

e
uJ,1∑J

j=0 e
uj,1

e
uJ,2∑J

j=0 e
uj,2

· · · e
uJ,N∑J

j=0 e
uj,N

e0∑J
j=0 e

uj,1

e0∑J
j=0 e

uj,2
· · · e0∑J

j=0 e
uj,N


(J+1)×N

(73)

7. Find the running row mean of matrix sj,i; this will yield the vector of predicted market

shares sj:

sj =


1
N

∑N
i=1 s1,i

1
N

∑N
i=1 s2,i
...

1
N

∑N
i=1 sJ,i

1
N

∑N
i=1 s0,i


(J+1)×1

(74)

8. With the vector of observed market shares soj , compute the contraction mapping:

δ′j = log(soj)− log(sj) + δj (75)

and update the vector of δj.

9. Repeat steps 2 to 8 until ||δ′j − δj|| < tolerance.

The vector of average utilities that equal observed to predicted market shares is obtained

using a fixed point algorithm. After convergence, we estimate a regression of δjt on product

observable characteristics, price, and price instruments. Note the contraction mapping above

is computed for each market separately; however, we use the full vector of δjt including all

markets to estimate the regression model and obtain structural parameter estimates for θ1

and ξjt. Then, we can estimate price markups per market as follows.

7.1.2 The supply-side

After computing sj,i and sj with the true vector of δj:
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1. Compute own-price derivatives as the running row mean of the following matrix:

∂sj,i
∂pj

=


α1,1 α1,2 · · · α1,N

α2,1 α2,2 · · · α2,N

...
...

. . .
...

αJ,1 αJ,2 · · · αJ,N

�


s1,1 s1,2 · · · s1,N

s2,1 s2,2 · · · s2,N

...
...

. . .
...

sJ,1 sJ,2 · · · sJ,N

�


1− s1,1 1− s1,2 · · · 1− s1,N

1− s2,1 1− s2,2 · · · 1− s2,N

...
...

. . .
...

1− sJ,1 1− sJ,2 · · · 1− sJ,N


(76)

or

∂sj,i
∂pj

=
(
αj,i

)
J×N �

(
sj,i

)
J×N �

(
1− sj,i

)
J×N (77)

where � is the element-wise multiplication operator and

αi =


α1 α2 · · · αN

α1 α2 · · · αN
...

...
. . .

...

α1 α2 · · · αN



=


α+ σpp1vp,1 + π1,pp1D1,1 + · · ·+ πd,pp1Dd,1 · · · α+ σpp1vp,N + π1,pp1D1,N + · · ·+ πd,pp1Dd,N

α+ σpp2vp,1 + π1,pp2D1,1 + · · ·+ πd,pp2Dd,1 · · · α+ σpp2vp,N + π1,pp2D1,N + · · ·+ πd,pp2Dd,N

...
. . .

...

α+ σppJvp,1 + π1,ppJD1,1 + · · ·+ πd,ppJDd,1 · · · α+ σppJvp,N + π1,ppJD1,N + · · ·+ πd,ppJDd,N


(78)

Hence, own-price derivatives are:

∂sj
∂pj

=


1
N

∑N
i=1 ∂s1,i/∂p1

1
N

∑N
i=1 ∂s2,i/∂p2

...
1
N

∑N
i=1 ∂sJ,i/∂pJ


J×1

(79)
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2. Compute cross price derivatives as:

∂sj
∂pk

=




α1,1 α1,2 · · · α1,N

α2,1 α2,2 · · · α2,N
...

...
. . .

...
αJ,1 αJ,2 · · · αJ,N

�


s1,1 s1,2 · · · s1,N

s2,1 s2,2 · · · s2,N
...

...
. . .

...
sJ,1 sJ,2 · · · sJ,N


×


s1,1 s1,2 · · · s1,J

s2,1 s2,2 · · · s2,J
...

...
. . .

...
sN,1 sN,2 · · · sN,J


(80)

or,

∂sj
∂pk

=
((

αj,i
)
J×N �

(
sj,i

)
J×N

)
×
(
si,j

)
N×J (81)

3. Replace the diagonal vector of ∂sj/∂pk by ∂sj/∂pj.

4. Build matrix Ω. This the element-wise product of a diagonal matrix where the elements

in the diagonal are squared matrices of ones of size Ff and the matrix of price derivatives.

Ω =


JF1 0 · · · 0
0 JF2 · · · 0
...

...
. . .

...
0 0 · · · JFF

� ∂sj
∂pk

(82)

For example, if there are 30 products in the market and 3 firms producing 15, 10, and

5 of those products respectively, then Ω is:



1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

15×15

0 · · · 0

0

1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

10×10

· · · 0

...
...

. . .
...

0 0 · · ·

1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

5×5



� ∂sj
∂pk
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5. Estimate markups as:

bj = (−Ω)−1 × sj (83)

With estimated markups we can obtain marginal costs and the supply-side unobservable.

Again notice the vector of markups is computed separately for each market but then bound

together in a single column vector to obtain marginal costs as mcjt = pjt − bjt. After

computing marginal costs we can estimate a regression of f(mcjt) on product observable

characteristics and cost instruments to obtain structural parameter estimates for γ and ωjt.

Estimation of the demand and supply linear parameters is done while holding non-linear

parameters in Σ and Π fixed. Therefore, to obtain optimal estimates of non-linear parameters

we have to compute the GMM function and minimize it over Σ and Π as follows:

7.1.3 The GMM function

1. With the estimates of ξjt, ωjt, and the matrix of instruments, build the sample analog

of the moment conditions of equations (38) and (39).

g(θ2) = ε′ × Z × IK×K × Z ′ × ε (84)

where

Z =




1 x1,1 · · · x1,K−1 z1,1 · · · z1,Q

1 x2,1 · · · x2,K−1 z2,1 · · · z2,Q
...

...
. . .

...
1 xJ,1 · · · xJ,K−1 z2,1 · · · z2,Q


1 x1,1 · · · x1,K−1 z1,1 · · · z1,Q

1 x2,1 · · · x2,K−1 z2,1 · · · z2,Q
...

...
. . .

...
1 xJ,1 · · · xJ,K−1 z2,1 · · · z2,Q




(85)
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ε =



ξ1

ξ2
...
ξJ
ω1

ω2
...
ωJ


(86)

and zj,q are the additional instrumental variables. Z includes all exogenous variables

used in the estimation, therefore, in addition to instruments in zj,q, it includes all

product observable characteristics in X except for price (this is the reason for the K − 1

column dimension for X). Moreover, the estructure of Z in equation (85) implies price

and cost instruments used in the regression of δjt and mcjt are the same. If this is

not the case, then the appropriate matrix of instruments must be build, for example

assigning a vector of zeros in the lower matrix of Z when an instrumental variable for

the demand-side is not used in the supply-side and viceversa.

g(θ2) yields the value of the GMM function we wish to minimize over θ2. To do so, we nest

the demand side and the supply side into a minimization algorithm such as the Nelder-Mead

simplex routine. In every iteration of the minimization algorithm, which is the outer loop of

the model, a new vector of θ2 is computed based on the function gradient of g(θ2), and then

the inner loop computes ξjt and ωjt as described before conditional on θ2.

7.2 Non separable income and prices: the case of BLP

To derive the programming structure of the model in Berry et al. (1995), suppose as before

you have a matrix X of product observable characteristics with dimensions J × (K + 1).

In this case, let pjt be separate vector of prices not included in X. Again, let vi be a

matrix of dimensions (K + 1)×N with each row vector sampled from a standard normal

distribution. Let viy be a row vector also sampled from a standard normal distribution and

obtain estimates of the average log income mt and the standard deviation of log income σyt

from household surveys. As in Nevo’s application, Σ is a diagonal matrix of coefficients of
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size (K + 1)× (K + 1) but, unlike Nevo, there are no demographic variables that interact

with consumer traits other than income, which is only allowed to interact with price but not

with the rest of observable characteristics. Also unlike Nevo, non-linear parameters in BLP

include the coefficient for the available income α, therefore µijt includes α log(yit − pjt). If

income and prices are not linearly separable in the function of the available income as in the

utility specification in Berry et al. (1995), then computation of the contraction mapping for

finding δjt holding Σ and α fixed, consists of:

7.2.1 The demand side

For each market:

1. Set the seed for δj for instance as a column vector of 1’s of dimensions J × 1.

2. Build the matrix for µij as:

µij =


1 x1,1 x1,2 · · · x1,K

1 x2,1 x2,2 · · · x2,K
...

...
...

. . .
...

1 xJ,1 xJ,2 · · · xJ,K

×


σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σK+1

×


v1,1 v1,2 · · · v1,N

v2,1 v2,2 · · · v2,N
...

...
. . .

...
vK+1,1 vK+1,2 · · · vK+1,N



+ α�


log(y1 − p1) log(y2 − p1) · · · log(yN − p1)
log(y1 − p2) log(y2 − p2) · · · log(yN − p2)

...
...

. . .
...

log(y1 − pJ) log(y2 − pJ) · · · log(yN − pJ)


(87)

µijJ×N
=
(
xj,k

)
J×(K+1)

×
(
σk
)

(K+1)×(K+1)
×
(
vk,i

)
(K+1)×N +α

(
log(yi − pj)

)
J×N

where

yi = m+ σy × (v1,y v2,y · · · vN,y)

3. Compute δj and market shares as in steps (3) to (9) of the demand side of section

(7.1.1). But, for the computation of market shares in step (7) perform the importance
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sampling estimator as follows:

(a) Find the running column sums of the matrix of choice probabilities over interior

products:

f =

(
J∑
j=1

eu1,i∑J
k=0 e

uk,i

J∑
j=1

eu2,i∑J
k=0 e

uk,i
· · ·

J∑
j=1

euJ,i∑J
k=0 e

uk,i

)
(88)

(b) Compute the sum of observed market shares of interior products s =
∑J

j=1 sj

(c) Weight each element of the matrix of choice probabilities by s/f .

(d) Estimate market shares as the running row means of the resulting matrix.

In BLP’s specification, after obtaining the vector of δjt that equal observed to predicted

market shares, the regression model to obtain estimates for the linear structural parameters

in the demand side includes as regressors all of the product observable characteristics except

for price. The coefficient for price (α) is non-linear and therefore its estimation must be done

in the outer loop rather than in the inner loop. Since price can not be separated linearly

from the function of available income, price derivatives will also have a special notation in

this model. The next subsection shows the matrix-like notation.

7.2.2 The supply side

After computing sj,i and sj, for each market:

1. Compute own-price derivatives as the running row mean of the following matrix:

∂sj,i
∂pj

= −α�


1/(y1 − p1) 1/(y2 − p1) · · · 1/(yN − p1)
1/(y1 − p2) 1/(y2 − p2) · · · 1/(yN − p2)

...
...

. . .
...

1/(y1 − pJ) 1/(y2 − pJ) · · · 1/(yN − pJ)



�


s1,1 s1,2 · · · s1,N

s2,1 s2,2 · · · s2,N
...

...
. . .

...
sJ,1 sJ,2 · · · sJ,N

�


1− s1,1 1− s1,2 · · · 1− s1,N

1− s2,1 1− s2,2 · · · 1− s2,N
...

...
. . .

...
1− sJ,1 1− sJ,2 · · · 1− sJ,N


(89)
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or

∂sj,i
∂pj

= −α�
(

1/(yi − pj)
)
J×N �

(
sj,i

)
J×N �

(
1− sj,i

)
J×N (90)

Hence, own-price derivatives are:

∂sj
∂pj

=


1
N

∑N
i=1 ∂s1,i/∂p1

1
N

∑N
i=1 ∂s2,i/∂p2

...
1
N

∑N
i=1 ∂sJ,i/∂pJ


J×1

(91)

2. Compute cross price derivatives as:

∂sj
∂pk

=

α


1/(y1 − p1) 1/(y2 − p1) · · · 1/(yN − p1)
1/(y1 − p2) 1/(y2 − p2) · · · 1/(yN − p2)

...
...

. . .
...

1/(y1 − pJ) 1/(y2 − pJ) · · · 1/(yN − pJ)

�


s1,1 s1,2 · · · s1,N

s2,1 s2,2 · · · s2,N
...

...
. . .

...
sJ,1 sJ,2 · · · sJ,N




×


s1,1 s1,2 · · · s1,J

s2,1 s2,2 · · · s2,J
...

...
. . .

...
sN,1 sN,2 · · · sN,J


(92)

or,

∂sj
∂pk

=
((

α(1/(yi − pj))
)
J×N �

(
sj,i

)
J×N

)
×
(
si,j

)
N×J (93)

3. Replace the diagonal vector of ∂sj/∂pk by ∂sj/∂pj.

4. To compute markups follow steps (4) to (5) of section (7.1.2).

7.2.3 The GMM function

The sample analog of the GMM estimator in the case of BLP has the same matrix-like notation

as in Nevo, but minimization is performed over a different vector of non-linear parameters.

Recall in Nevo, non-linear parameters are Σ and Π. The first are the coefficients of the

interactions between product observable characteristics and the consumer’s unobservable
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characteristic vi, and the second are the coefficients of the interactions between product

observable characteristics and consumer observable demographics. In the case of BLP, the

non-linear parameters of the model are Σ and α. Thus,

g(θ2) = ε′ × Z × IK×K × Z ′ × ε

with Z and ε as in Nevo’s case.

7.3 The variance-covariance matrix

Recall from section (43), to estimate the variance-covariance matrix for the GMM estimator

we have to estimate the Jacobian of the moment conditions with respect to the linear and the

non-linear parameters. In the first case this amounts to xjt, but in the second case, if product

characteristics interact with the unobservable vi and observable demographic traits, then

the derivatives of δjt with respect to σk and πd are given by equation (43). The matrix-like

notation for programming of the variance-covariance matrix is outlined in the steps below.

For each market:

1. Compute the partial derivative of sj with respect to δj as the running row mean of the

following matrix:

∂sj,i
∂δj

=


s1,1 s1,2 · · · s1,N

s2,1 s2,2 · · · s2,N
...

...
. . .

...
sJ,1 sJ,2 · · · sJ,N

�


1− s1,1 1− s1,2 · · · 1− s1,N

1− s2,1 1− s2,2 · · · 1− s2,N
...

...
. . .

...
1− sJ,1 1− sJ,2 · · · 1− sJ,N

 (94)

or

∂sj,i
∂δj

=
(
sj,i

)
J×N �

(
1− sj,i

)
J×N
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Hence, the derivatives are:

∂sj
∂δj

=


1
N

∑N
i=1 ∂s1,i/∂δ1

1
N

∑N
i=1 ∂s2,i/∂δ2

...
1
N

∑N
i=1 ∂sJ,i/∂δJ


J×1

(95)

2. Compute the cross derivatives of sj with respect to δk as:

∂sj
∂δk

=


s1,1 s1,2 · · · s1,N

s2,1 s2,2 · · · s2,N
...

...
. . .

...
sJ,1 sJ,2 · · · sJ,N

×


s1,1 s1,2 · · · s1,J

s2,1 s2,2 · · · s2,J
...

...
. . .

...
sN,1 sN,2 · · · sN,J

 (96)

or,

∂sj
∂δk

=
(
sj,i

)
J×N ×

(
si,j

)
N×J (97)

3. Replace the diagonal vector of ∂sj/∂δk with ∂sj/∂δj.

4. For every xk ∈ X, compute the derivative of sj with respect to σk. This is consists of:

(a) Calculate the element-wise product:

xj,ksj,i =


x1,k x1,k · · · x1,k

x2,k x2,k · · · x2,k
...

...
. . .

...
xJ,k xJ,k · · · xJ,k

�


s1,1 s1,2 · · · s1,N

s2,1 s2,2 · · · s2,N
...

...
. . .

...
sJ,1 sJ,2 · · · sJ,N

 (98)

(b) Find the running column sums of the matrix above,

J∑
j=1

xj,ksj,i =

(
J∑
j=1

xj,ksj,1

J∑
j=1

xj,ksj,2 · · ·
J∑
j=1

xj,ksj,N

)
(99)
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(c) Compute the derivative of choice probabilities with respect to σk as:

∂sj,i
∂σk

=




vk,1 vk,2 · · · vk,N
vk,1 vk,2 · · · vk,N

...
...

. . .
...

vk,1 vk,2 · · · vk,N

�


s1,1 s1,2 · · · s1,N

s2,1 s2,2 · · · s2,N
...

...
. . .

...
sJ,1 sJ,2 · · · sJ,N




�




x1,k x1,k · · · x1,k

x2,k x2,k · · · x2,k
...

...
. . .

...
xJ,k xJ,k · · · xJ,k

−

∑J

j=1 xj,ksj,1
∑J

j=1 xj,ksj,2 · · ·
∑J

j=1 xj,ksj,N∑J
j=1 xj,ksj,1

∑J
j=1 xj,ksj,2 · · ·

∑J
j=1 xj,ksj,N

...
...

. . .
...∑J

j=1 xj,ksj,1
∑J

j=1 xj,ksj,2 · · ·
∑J

j=1 xj,ksj,N




(100)

or

∂sj,i
∂σk

=
((

vk,i
)
J×N �

(
sj,i

)
J×N

)
�
((

xj,k
)
J×N −

( ∑J
j=1 xj,ksj,i

)
J×N

)

(d) Compute the running row mean of
∂sj,i
∂σk

to obtain
∂sj
∂σk

:

∂sj
∂σk

=


1
N

∑N
i=1 ∂s1,i/∂σk

1
N

∑N
i=1 ∂s2,i/∂σk

...
1
N

∑N
i=1 ∂sJ,i/∂σk


J×1

(101)

5. Bind each column vector resulting from the procedure above to obtain:

∂sj
∂Σ

=


1
N

∑N
i=1 ∂s1,i/∂σ1

1
N

∑N
i=1 ∂s1,i/∂σ2 · · · 1

N

∑N
i=1 ∂s1,i/∂σK+1

1
N

∑N
i=1 ∂s2,i/∂σ1

1
N

∑N
i=1 ∂s2,i/∂σ2 · · · 1

N

∑N
i=1 ∂s2,i/∂σK+1

...
...

. . .
...

1
N

∑N
i=1 ∂sJ,i/∂σ1

1
N

∑N
i=1 ∂sJ,i/∂σ2 · · · 1

N

∑N
i=1 ∂sJ,i/∂σK+1


J×(K+1)

(102)

6. Find the derivative of δj with respect to Σ as

∂δj
∂Σ

=

(
∂sj
∂δk

)−1
∂sj
∂Σ

(103)
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7. Repeat steps (4) to (6) for the derivatives with respect to πd. Notice the only difference

in computation lies in replacing matrix
(
vk,i

)
J×N by

(
Dd,i

)
J×N . The result must

be a matrix as the one below:

∂sj
∂Π

=


1
N

∑N
i=1 ∂s1,i/∂π1

1
N

∑N
i=1 ∂s1,i/∂π2 · · · 1

N

∑N
i=1 ∂s1,i/∂πd

1
N

∑N
i=1 ∂s2,i/∂π1

1
N

∑N
i=1 ∂s2,i/∂π2 · · · 1

N

∑N
i=1 ∂s2,i/∂πd

...
...

. . .
...

1
N

∑N
i=1 ∂sJ,i/∂π1

1
N

∑N
i=1 ∂sJ,i/∂π2 · · · 1

N

∑N
i=1 ∂sJ,i/∂πd


J×d

(104)

and then the derivative of δj with respect to Π would be:

∂δj
∂Π

=

(
∂sj
∂δk

)−1
∂sj
∂Π

(105)

8. Build the Jacobian matrix by binding matrices xj,k,
∂δj
∂Σ

,
∂δj
∂Π

, and wj,q:

D =

(
xj,k

∂δj
∂Σ

∂δj
∂Π

wj,q

)
J×(2(K+1)+d+Q)

(106)

where wj,q are the variables used in the regression for the marginal cost.

9. Compute the variance of the estimators following equation (49) as:

(a) Calculate ∂sj/∂ξj as the running row mean of the following matrix:

∂sj,i
∂ξj

=


s1,1 s1,2 · · · s1,N

s2,1 s2,2 · · · s2,N
...

...
. . .

...
sJ,1 sJ,2 · · · sJ,N

�


1− s1,1 1− s1,2 · · · 1− s1,N

1− s2,1 1− s2,2 · · · 1− s2,N
...

...
. . .

...
1− sJ,1 1− sJ,2 · · · 1− sJ,N

 (107)

or,

∂sj,i
∂ξj

=
(
sj,i

)
J×N �

(
1− si,j

)
J×N (108)
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then

∂sj
∂ξj

=


1
N

∑N
i=1 ∂s1,i/∂ξ1

1
N

∑N
i=1 ∂s2,i/∂ξ2

...
1
N

∑N
i=1 ∂sJ,i/∂ξJ


J×1

(109)

(b) Calculate ∂sj/∂ξk as:

H =
∂sj
∂ξk

=


s1,1 s1,2 · · · s1,N

s2,1 s2,2 · · · s2,N
...

...
. . .

...
sJ,1 sJ,2 · · · sJ,N

×


s1,1 s1,2 · · · s1,J

s2,1 s2,2 · · · s2,J
...

...
. . .

...
sN,1 sN,2 · · · sN,J

 (110)

(c) Replace the diagonal of matrix
∂sj
∂ξk

by
∂sj
∂ξj

(d) Compute S1 of equation (49) for a particular market, namely St1, as:

St1 = (Z ′ξξ′Z)

(e) Compute S2 of equation (49) for market t as:

St2 = Z ′H−1V2H
−1′Z

where

V2 =


s1 0 · · · 0
0 s2 · · · 0
...

...
. . .

...
0 0 · · · sJ

−


s1

s2
...
sJ

× (s1 s2 · · · sJ) (111)

or,

V2 = diag(s)J×J − ss′J×J
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(f) Compute S3 of equation (49) for market t as:

St3 =
1

ns
Z ′H−1V3H

−1′Z

where

V3 =


s1 − so1
s2 − so2

...
sJ − soJ

× (s1 − so1 s2 − so2 · · · sJ − soJ) (112)

and soj are observed market shares. If several simulations are carried out in the

estimation, then V3 should be averaged between simulations, which explains the

1/ns in the equation above.

For every market, the procedure above will yield a K ×K matrix for St1, S
t
2, and St3. To

aggregate markets and obtain one single variance covariance matrix do the following:

1. Average St1, St2, and St3 through markets as:

S1K×K
=

ξ′ξ

JT −K
�

T∑
t=1

St1

S2K×K
=

1

nJT

T∑
t=1

St2

S3K×K
=

1

JT

T∑
t=1

St2

(113)

2. Add S1, S2 and S3 to obtain the aggregate measure of variance due to the three sources

of error:

S1K×K
+ S2K×K

+ S3K×K
= SK×K (114)

3. Compute the variance-covariance matrix:

V̂ (β̂GMM) = (D′ZZ ′D)−1(D′ZSZ ′D)(D′ZZ ′D)−1 (115)
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The squared root of the diagonal of this matrix yields the standard error of each parameter.

7.4 Computation of counterfactuals

Estimation of counterfactual scenarios rely on the contraction mapping of prices for finding

the market equilibrium under new market conditions. The contraction mapping can be solved

through fixed point algorithms as in the case of average utilities that equal observed to

predicted market shares. However, the functional form to approach the fixed point has strong

implications over the vector of equilibrium prices. In other words, counterfactual scenarios

can have multiple equilibriums. This does not occur for the contraction mapping of average

utilities in which there is a unique fixed point. The existence of multiple equilibriums or

multiple equilibrium prices that solve the pricing equation of each firm, renders difficulties for

hypothesis testing in the counterfactuals. One way to approach this issue is to try to compute

every equilibrium, test the hypothesis in each of them, and then decide upon the conclusion

the majority of them arrive to. In this subsection we focus on the matrix-like notation and

steps to compute equilibrium prices and market shares in the counterfactual analysis and

leave the discussion on the different algorithms to approach the fixed point to the next section

where we also revise the literature. We would focus on the counterfactuals that change the

competitive structure of the market such as mergers in the context of separable income and

prices as in Nevo. Analogs to the non-separable case only require changing matrices µijt and

∂sjt/∂pkt accordingly.

Suppose after estimation of structural parameters with an observed market structure of

various multi-product firms, the market turns into a monopoly with all firms colluding. The

vector of new equilibrium prices and market shares under the monopolistic structure is

computed in following steps:

For every market:

1. Set the seed for the vector of prices, p∗, for instance, a column vector of 1’s.
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2. Predict the average utilities as:

δ∗ = Xθ̂1 + ξ̂ (116)

where X includes p∗.

3. Compute matrix µijt as in equation (68) and market shares, s(p∗) as in equation (74).

4. Calculate price derivatives as in equation (80).

5. Compute the vector of markups under the new market structure:

b∗ = Ω(p∗)−1s(p∗) (117)

where

Ω(p∗) = −


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

 ∂sj
∂p∗k

(118)

6. Add b∗ to m̂c to obtain a new vector of prices p′.

7. Make p∗ = p′.

8. Repeat steps (2) to (7) until ||p∗ − p′|| < tolerance

Estimation of counterfactual scenarios in light of Nevo’s application has strong assumptions

on the cost function and the producer/retailer relations. As the author mentions, the fact

that marginal costs are held constant between the observed scenario and the counterfactual

means, on the one hand, that he is ruling out any potential cost savings due to the merger

and, on the other hand, that producer/retailer relations which also determine marginal

costs do not change after the merger, in other words, the merger has no effect on the price

negotiation between producers and retailers. Another key strategy for the computation

of counterfactuals is holding fixed the structural parameters estimated from the observed

scenario. This implies the counterfactual situation does not affect consumer taste for any

product observable characteristic, which might not be the case if firms in the counterfactual,

for example, carry out marketing efforts that change consumer preferences. The lesson here is

that the researcher must consider all implications of the assumptions on which counterfactuals
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are build, and analyze how relaxing those assumptions could affect results.

8 Applications

Structural demand models are usually used in the analysis of industries with market power,

policy evaluation and understanding of consumer preferences. Applications abound in all

these matters and they have become important tools for the design of competition policy in

different sectors. Take, for instance, the health care market. Ho and Lee (2013) study the

impact of insurer competition on negotiated hospital prices by estimating the demand for

hospitals using the random coefficients logit outlined in this document but modelling the

supply side in two steps: first insurers set premiums charged to consumers and then they

engage in a Nash bargaining game with health service providers from which service prices

are determined. Using the estimates of the demand of patients for hospitals, the authors

can compute counterfactual scenarios assuming a hospital is drop from the provider network

of each insurer and derive a measure of the patient’s willingness to pay for each hospital.

Willingness to pay helps in the identification of the bargaining power parameters in the

supply side. Grennan (2013) is another example of how structural demand models help in

the identification of bargaining parameters if prices are not determined by direct competition

between producers but by bilateral negotiations between producers and retailers. The author

studies the impact of bargaining power on the price discrimination of medical devices, in

particular, coronary stents. He models the demand of every patient/doctor combination

for coronary stents in every market defined as a hospital in a month. Since preferences for

coronary stents might change due to recruitment of new doctors or changes in the allocation

of patients to physicians, then the author models the unobserved stent quality ξ as an

autoregressive process and further captures aggregated measures of stent quality by using

a nested logit model with nests defined by the type of stent (of which there are only two).

Gowrisankaran et al. (2014) also estimate the demand of patients for hospitals to examine the

effects of hospital mergers in negotiated health service prices but add the demand of enrollees

for health insurance companies for identification of the bargaining power. The timing of

the game between insurers and providers is: 1) insurers negotiate prices with hospitals, 2)
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insurer set premiums, 3) patients choose to which insurer enroll, 4) patients get sick and go

to the hospital. The solution to this game is found using backwards induction, solving the

demand of patients for hospitals first, then the profit maximization problem of health insurers

choosing premiums, and finally estimating the Nash bargaining game between insurers and

provider.

Most applications have been developed in markets of products of mass consumption where

product differentiation is crucial. Berry et al. (1995) introduce the empirical framework in

the U.S. automobiles market to derive reasonable substitution patterns between products and

reasonable markups. Nevo (2001) studies the ready-to-eat cereal market and uses the static

utility and oligopolistic structure of the model outlined above to measure the impact of the

competitive structure on price-cost margins. Petrin (2002) uses the empirical framework to

measure changes in consumer welfare due to the introduction of minivans in the automobiles

market. Dubé (2005) also measures changes in consumer welfare due to mergers in the

carbonated soft drink industry. Applications in trade, merger and environmental policy

include Berry and Pakes (1993) and Berry et al. (1999). The empirical framework is flexible

enough to accommodate nonlinear pricing strategies, sequential consumer choices and demand

for product segments in a nested logit context. For example, Slade (2004) studies the brewing

industry in the U.K using a nested logit approach.

In the telecommunications market, applications of structural demand models have been used

mainly to measure the extent of switching costs due to handset bundling and the effects of

number portability on consumer welfare. Kim (2006) models the static utility a consumer

gets from using a certain amount of minutes under a voice plan. Consumers choose network

operators and then their minutes consumption. However, network operator choice is dynamic.

Every period, the probability that the consumer switches to a new operator or remains with

the same operator is modeled as a first-order Markov process. Grzybowski (2008) relies only

on the static utility specification to identify switching costs in the mobiles market in the UK.

The author models consumer utility from choosing a network operator and includes in the

utility specification a matrix with a set of dummy variables accounting for switching from

one operator to the other. In the case of Dubé et al. (2009b) the dummy variables in the
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utility function denote brand loyalty and the consumer only derives additional satisfaction

if she remains buying the same brand in the next period. The probability that a consumer

loyal to brand j will become loyal to another brand, as before, is modeled as a first-order

Markov chain.

Applications of structural demand models to the telecommunications markets make explicit

the fact that consumer choices for certain products are dynamic rather than static. Besides

the choice of network operator, choices of durable, storable, or experience goods are also

determined by a dynamic indirect utility level. We do not discuss the dynamic context

of structural demand models but we have to mention that treatment of dynamics have

important implications on the parameter estimates, in particular, on the substitution patterns.

Gowrisankaran and Rysman (2012) state modeling dynamics turns the consumer purchase

problem into a capital investment problem that depends on the difference in the present-value

price of the product between this period and the next. For example, in the automobile

industry, if prices are falling, static models will predict a steady increase in sales, while

dynamic models would predict sales increase the most as prices stop falling. In other words,

in a dynamic context, consumers who value high quality products might prefer waiting several

periods before buying until they see prices stop falling and then level-off. Thus, in a static

model price sensitivity for low quality products that are bought when prices are low, will

be high, but price sensitivity for high quality products which are bought as prices level-off,

will be low. This suggests price sensitivity in a static model when goods are durable will be

biased downwards. Estimation of dynamic demand models rely mainly on the specification of

a fixed point algorithm on the Bellman equation indicating the present-value utility in the

current period is a function of the present-value utility of the previous period. Applications

of dynamic demand models were firstly motivated by Rust (1987) who studied optimal bus

engine replacement decisions and ever since have abounded in different markets such as: the

market for digital cameras (Carranza, 2007), the camcorder industry (Gowrisankaran and

Rysman, 2012), the US computer printer market (Melnikov, 2000), the laundry detergents

industry (Hendel and Nevo, 2006), the market for ketchup sauce (Erdem et al., 2003), the

automobiles market (Esteban and Shum, 2007; Schiraldi, 2011), etc.
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Since estimation of structural demand models imply certain computational burden in par-

ticular when calculating numeric integrals, many authors have studied the impact of using

different numeric algorithms to approach both the minimization of the GMM function, the

fixed points, and the integrals for market shares and price derivatives. Knittel and Metaxoglou

(2008) study criterion functions that are not globally concave or convex and measure the

impact of choosing different local extrema in own and cross price elasticities. Since the

minimization procedure may stop in regions where the GMM function reaches a saddle point

or a local extrema, choosing which solution to report in non trivial, specially when different

solutions may yield differences by factors of over 100 in own and cross price elasticities and

differences in the direction of changes in welfare. The authors compare parameters obtained

with the Nelder-Mead simplex, the Generalized Pattern Search, the Mesh Adaptive Direct

Search and the SolvOpt algorithms, among others, and show that the SolvOpt algorithm

arrives to the global minimum across many different sets of starting values. Their overall

conclusion is that “for an exhaustive nonlinear search, researchers will need to use multiple

starting values, at least 50, and multiple algorithms”. Dubé et al. (2009a) focus on the impact

of nested fixed point algorithms on parameter estimates and on how the inner loop error

can propagate to the outer loop. The authors find fixing loose inner loop tolerances and

standard outer loop tolerances will yield convergence problems. They also show having loose

tolerances in both loops will derive in biased parameter estimates that do not minimize the

objective function.

9 Conclusions

This document is concerned with the theory, estimation and programming of structural

demand models in economics. First it gives a brief overview of how economic models of

markets with imperfect competition have evolved from early theoretical studies of asymmetric

information, pricing strategies, and product differentiation to advanced empirical approaches

for the estimation of structural parameters such as price elasticities and marginal costs.

Second, it outlines the basic economic intuition behind the random coefficients discrete choice

models that were introduced in the mid 1990’s to undergo hypothesis testing in industries
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with market power and highly differentiated products. Third, it gives a detailed description of

the random coefficients logit model for the demand side of the market and then introduces the

supply side under the argument it helps identify the endogenous effect of price on equilibrium

market shares. Both the demand and the supply side rely on important assumptions for

identification and equilibrium. For instance, it assumes a particular distribution for the

random shock to the utility function of a consumer and a Nash-Bertrand equilibrium in firm

competition. Fourth, it outlines the estimation procedure proposed by Berry et al. (1995)

and then it gives the matrix-like notation that should be taken to computer programming for

estimation of these models. Finally a brief literature review on applications of such models is

provided in the last section.
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