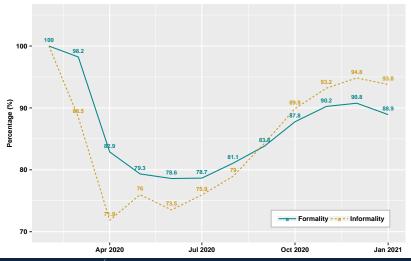
The Role of the Informal Sector in the COVID Crisis: A Cushion or an Amplifier?

Andrés Zambrano David Montoya Andrés Álvarez Hernando Zuleta

Universidad de los Andes


April 22, 2021

Zambrano, Montoya, Álvarez and Zuleta (2021) The Role of the Informal Sector in the COVID Crisis

Introduction

- Employment in developing countries has a big component of informality
- Informal workers' income is more fragile to business cycles
- But informal labor market is more flexible than formal one
- Thus it can absorb part of the destruction of formal jobs after a negative shock (Leyva and Urrutia, 2020a)
- However, Covid crisis is different, informal sector has a higher risk of infection, would this time lead the recovery?

Informality was first an amplifier and then leads the recovery

Zambrano, Montoya, Álvarez and Zuleta (2021)

- We propose a SIR model with formal and informal markets
- Agents derive utility from formal, informal consumption and indivisible labor, and are born with a productivity
 Household
- - Higher the more the agent consumes and work
 - Higher when those activities take place in the informal sector
 - Higher the greater the number of infected agents

- A formal firm is subject to minimum wage and payroll taxes, thus hires workers with a sufficiently high productivity Formal
- Rest of workers insure with a lottery to become self-employed (informal) or unemployed Non-Formal
- We calibrate the model to Colombian and Peruvian economies
- Then we simulate economic and epidem. effect of Government
 - Targeted and non-targeted transfers
 - General and selective lockdowns
 - Lower payroll taxes

Table: Calibration

Parameter Colombia		Peru	Description	Source	
	$0.96\frac{1}{52}$	0.05 ¹		F: (2020)	
β		0.96 ==	Discount factor	Eichenbaum et al. (2020)	
η	10	10	Elasticity of substitution	Krueger et al. (2020)	
γ_f	1.2	0.8	Formal good weighting in consumption aggregator	Match observed data	
γ_I	0.8	1.2	Informal good weighting in consumption aggregator	Match observed data	
θ	$6.25 imes 10^{-4}$	$6.25 imes 10^{-4}$	Labor supply parameter	Match 40 working hours	
ψ	0.8	0.8	Productivity of infected people	Eichenbaum et al. (2020)	
w	1.26	1.07	Hourly minimum wage relative to median hourly informal wage	GEIH, ENH	
τ	0.3	0.175	Payroll taxes	OCDE	
λ	2.36	1.54	Exponential distribution for productivity	Match formal employment	
и	0.095	0.039	Unemployment rate	DANE, INEI	
Т	13.96	8.32	Weekly lump sum transfer relative to median hourly informal wage	DNP, MEF	
π_0	0.3902	0.3902	Autonomous Infection Intensity	Eichenbaum et al. (2020)	
$\phi_c^I \phi_c^I$	1.5682×10^{-7}	1.5682×10^{-7}	Infection risk from consuming - Informal sector	Match observed data	
$\phi_c^{\bar{f}}$	$7.8408 imes 10^{-8}$	$7.8408 imes 10^{-8}$	Infection risk from consuming - Formal sector	Match observed data	
$\phi_n^{\tilde{l}}$	2.4884×10^{-4}	2.4884×10^{-4}	Infection risk from work - Informal sector	Match observed data	
ϕ_n^f	8.2947×10^{-7}	8.2947×10^{-7}	Infection risk from work - Formal sector	Match observed data	
ϕ_d	0.0029	0.0029	Death rate	Match observed data	
ϕ_r	0.3869	0.3869	Recovery rate	Eichenbaum et al. (2020)	

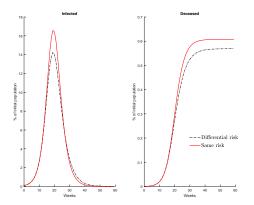
E

・ 同 ト ・ ヨ ト ・ ヨ

Discussion - Baseline Results Colombia

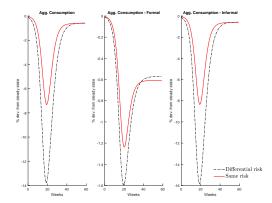
Table: Baseline results - Colombia

Model	Annual fall Agg. C.	Max. fall Agg. C.	Max. unemployment	Deceased
Baseline	-4.13%	-13.80%	0.25	0.56%
Without reduction in productivity of infected people	-4.04%	-13.51%	0.24	0.57%
Same probability of infection in both sectors	-2.12%	-7.32%	0.17	0.60%
Sticky prices	-4.46%	-14.98%	0.25	0.57%

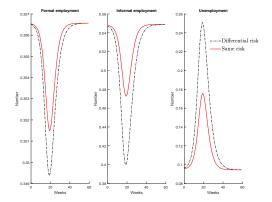

Zambrano, Montoya, Álvarez and Zuleta (2021) The Role of the Informal Sector in the COVID Crisis

• • • • • • •

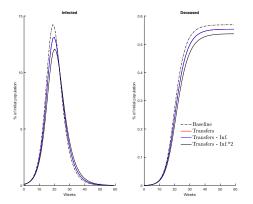
Э


Epidemiological Results - Colombia

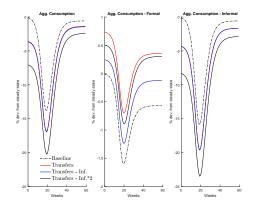
• HHs substitute informal for formal consumption to decrease risk of contagion


Consumption - Colombia

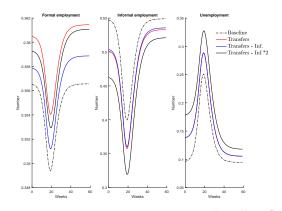
• The substitution generates a bigger dip in the informal sector that greatly affects total consumption


Employment - Colombia

• Informal employment decreases at a faster pace than formal employment, duplicating effect on unemployment

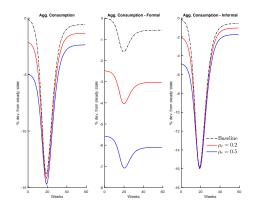

Lump sum transfers - Epidemiological effects in Colombia

- The greater they are, the smoother is the pandemic
- Same epidemiological effect of targeted and universal transfers


Lump sum transfers - Consumption in Colombia

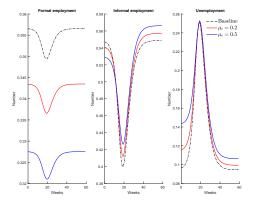
- HHs use transfers to substitute informal consumption
- More formal consumption with universal transfers

Lump sum transfers - Employment in Colombia

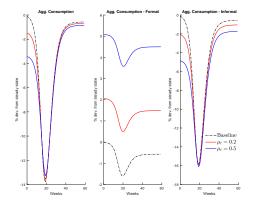

- Price of formal goods increases, encouraging formal employment
- But overall unemployment increases

Zambrano, Montoya, Álvarez and Zuleta (2021)

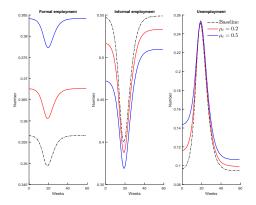
Lockdowns - Consumption in Colombia


- Mostly useful in the first weeks before the peak, reducing informal consumption
- But reductions in formal consumption are permanent

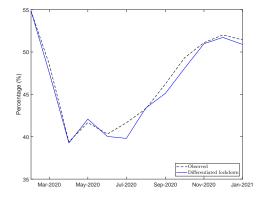
Zambrano, Montoya, Álvarez and Zuleta (2021)


Lockdowns - Employment in Colombia

• By the end of the pandemic, informal employment absorbs lost formal jobs


Selective lockdowns - Consumption in Colombia

- Useful to substitute for formal consumption
- Reduces output loss


Selective lockdowns - Employment in Colombia

• Price of formal goods relatively increases, encouraging formal employment

Zambrano, Montoya, Álvarez and Zuleta (2021)

Calibrated lockdown to observed informality

Figure: Comparison

Zambrano, Montoya, Álvarez and Zuleta (2021) The Role of the Informal Sector in the COVID Crisis

Table: Policy Experiments - Colombia

Model	Annual fall Agg. C.	Max. fall Agg. C.	Max. unemployment	Deceased
Baseline	-4.13%	-13.80%	0.25	0.56%
Lump sum transfers	-6.57%	-17.00%	0.28	0.55%
Lump sum transfers - Informals	-6.57%	-17.02%	0.28	0.55%
Lump sum transfers - Informals x 2	-9.16%	-20.34%	0.32	0.53%
Lockdown, $\mu = 0.2$	-5.11%	-14.18%	0.25	0.56%
Lockdown, $\mu = 0.5$	-6.48%	-14.71%	0.25	0.56%
Targeted lump sum transfers and lockdown	-7.53%	-17.33%	0.28	0.55%
Selective lockdown, $\mu = 0.2$	-4.47%	-13.55%	0.25	0.56%
Selective lockdown, $\mu = 0.5$	-4.98%	-13.27%	0.25	0.56%

Zambrano, Montoya, Álvarez and Zuleta (2021) The Role of the Informal Sector in the COVID Crisis

/□ ▶ < □ ▶ < □

Э

Comparison to Peruvian Economy

• Decreasing payroll taxes smooths recession

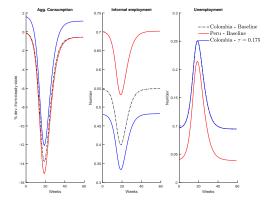


Figure: Consumption and employment.

Zambrano, Montoya, Álvarez and Zuleta (2021) The Role of the Informal Sector in the COVID Crisis

Discussion

- A higher risk of contagion for the informal sector generates a deeper recession (2pp)
- Flexible formal prices and less distorted labor markets ease the recession (0.3pp)
- Lump sum transfers reduce labor supply
 - Smoothing the pandemic, but deepening recession by 2.4
 - Duplicating them reduces mortality, but duplicates recession
 - Targeting them lowers their cost
- Lockdowns are useful for first weeks
 - Targeting them to informal sector, reduces output loss

Related literature

- SIR models in macroeconomics: Eichenbaum et al (2020), Atkeson (2020), Alvarez et al. (2020)
- Optimal lockdown policies: Acemoglu et al. (2020), Glover et al. (2020), Assenza et al. (2020), Cakmakli et al. (2021)
- SIR models with informality: Hevia and Neumeyer (2020), Alon et al. (2020)
- Non-SIR models with informality: Leyva and Urrutia (2020b), Alfaro et al. (2020), Kandoussi and Langot (2020)

伺下 イヨト イヨト

Model: Households

- Time is discrete and horizon is infinite
- There is a continuum *j* ∈ [0, 1] of individuals, endowed with productivity A^j drawn from cdf G (A), maximizing:

$$U = \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t [\log(c_t)^j - \theta n_t^j]$$
(1)

where c_t^j and n_t^j denotes consumption and indivisible labor

• Let c_t^{fj} be the consumption of formal goods and c_t^{lj} denotes the consumption of informal good, where

$$c_{t}^{j} = [\gamma_{f}(c_{t}^{fj})^{\frac{\eta-1}{\eta}} + \gamma_{l}(c_{t}^{lj})^{\frac{\eta-1}{\eta}}]^{\frac{\eta}{\eta-1}}$$

Model: Formal Production

Bacl

- There is a representative formal firm that hires formal labor at a minimum per hour wage *w*
- It transforms labor into a formal good with price P_f and obtains profits

$$P_f \int_{\hat{A}} A^j dG(A^j) - w(1+\tau) \int_{\hat{A}} dG(A^j)$$
(2)

where \hat{A} is the productivity threshold to hire and τ are the payroll taxes

• Threshold is determined by a zero-profit condition

- At the informal sector, all individuals appropriate their own production, assumed to satisfy $y_{tl}^j = n_{tl}^j$
- Non-formal HHs can insure with a lottery a la Hansen (1985):
 - With prob α works in the informal sector
 - With prob $1-\alpha$ becomes unemployed

▶ Back

Model: Government

- Lump sum transfers *T* that could be targeted to informals and unemployed
- Confinements modelled as consumption taxes μ
- Budget constraint of HH *j* becomes

$$(1+\mu)\left(P_f c_f^j + c_l^j\right) \le I_{A^j \ge \hat{A}} w n_f^j + \alpha + T$$
(3)
where $\alpha \cdot n_f^j = 0$

▶ Back

Model: Epidemiology

- Population is divided in four groups:
 - Susceptibles, S_t , who become infected with prob. π
 - Infected, *I_t*, whose productivity decrease to ψ < 1, can die with prob. π_d or recover with prob π_r
 - Recovered who become immune to the disease, R_t
 - Dead, D_t .
- Probability of infection is:
 - Higher the more she consumes and work
 - Higher when consuming and working in the informal sector: $\pi_{x_l} \ge \pi_{x_f}$ for $x \in \{c, n\}$
 - Higher the greater the number of infected people

$$\pi_{t} = I_{t} \left(\pi_{c_{l}} c_{tl}^{s} c_{tl}^{i} + \pi_{c_{f}} c_{tf}^{s} c_{tf}^{i} + \pi_{n_{l}} n_{tl}^{s} n_{tl}^{i} + \pi_{n_{f}} n_{tf}^{s} n_{tf}^{i} + \pi_{0} \right)$$

伺下 イヨト イヨト

► Back

Model: Recursive Formulation

• Value function v^k for k = S, I, R

$$v^{sj} = \max_{c_f^s, c_i^s, n_f^s, \alpha^s} \log c^s - \theta n_f^s - \theta \alpha^s + \beta \left[(1 - \pi) v^s + \pi v^i \right]$$

$$\upsilon^{ij} = \max_{\boldsymbol{c}_{f}^{i}, \boldsymbol{c}_{f}^{i}, \boldsymbol{n}_{f}^{i}, \alpha^{i}} \log \boldsymbol{c}^{i} - \theta \boldsymbol{n}_{f}^{i} - \theta \alpha^{i} + \beta \left[(1 - \pi_{d} - \pi_{r}) \upsilon^{i} + \pi_{r} \upsilon^{r} \right]$$

$$v^{rj} = \max_{c_f^r, c_l^r, n_f^r, \alpha^r} \log c^r - \theta n_f^r - \theta \alpha^r + \beta \left[v^r \right]$$

subject to (3)

• • = • • = •

Э

Solution

• For susceptible F.O.C. with respect consumption of sector k = f, I are:

$$\gamma_{k}\left(\frac{1}{c^{s}}\right)\left(\frac{c^{s}}{c_{k}^{s}}\right)^{\frac{1}{\eta}} = \lambda_{b}^{s}P_{k} + \beta\left(\upsilon^{s} - \upsilon^{i}\right)I\pi_{c_{k}}c_{k}^{i}$$
$$\lambda_{b}^{s} = \theta + \beta\left(\upsilon^{s} - \upsilon^{i}\right)I\pi_{\eta}\alpha^{i}G\left(\hat{A}\right)^{2}$$

• The distortion of last term is not observed in I and R

/□ ▶ ▲ 글 ▶ ▲ 글

Discussion - Baseline Results Peru

- A higher share of informal goods in typical bundle increased contagion
- Added to a greater size of the informal sector, led to a greater recession

Model	Annual fall Agg. C.	Max. fall Agg. C.	Max. unemployment	Deceased
Without reduction in productivity of infected people	-4.49%	-14.77%	0.21	0.56%
Same probability of infection in both sectors	-2.32%	-8.08%	0.13	0.60%
Sticky prices	-5.04%	-16.65%	0.21	0.56%
Baseline	-4.59%	-15.06%	0.21	0.56%

Table: Baseline results - Peru

• • = • • = •

Results - Peru

• Smaller transfers and more flexible markets will allow for a faster recovery

Table: Policy Experiments - Peru

Model	Annual fall Agg. C.	Max. fall Agg. C.	Max. unemployment	Deceased
Baseline	-4.59%	-15.06%	0.21	0.56%
Lump sum transfers	-5.96%	-16.87%	0.23	0.55%
Lump sum transfers - Informals	-5.97%	-16.88%	0.23	0.55%
Lump sum transfers - Informals x 2	-7.39%	-18.74%	0.25	0.54%
Lockdown, $\mu = 0.2$	-5.67%	-15.57%	0.21	0.56%
Lockdown, $\mu = 0.5$	-7.15%	-16.25%	0.21	0.55%
Targeted lump sum transfers and lockdown	-7.04%	-17.35%	0.23	0.55%
Selective lockdown, $\mu = 0.2$	-4.79%	-14.72%	0.21	0.56%
Selective lockdown, $\mu = 0.5$	-5.09%	-14.24%	0.21	0.55%

伺下 イヨト イヨト