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Colombian electricity market

@ Main generation sources: hydro and thermal power
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@ Concentrated generation capacity in a few firms

References

@ Current design results in bids above true unitary costs (McRae and Wolak,

2017; Balat et al., 2023)
@ Plans to diversify generation mix include (UPME, 2020):

o Introducing solar and wind energy
o Reducing thermal power due to environmental impact
o Improving reliability during reduced rainfall periods
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Design problem

Optimal auction design
@ Strategy-proof auction:

o Minimizes expected generation costs

Experiment Future work

Reference

o Incentivizes participation and truthful bidding, procures demand and

satisfies capacity constraints

Challenges

@ Technical considerations: uncertain capacity and demand, diverse generation

technologies, correlated costs.

@ Multiple competing objectives: Price stability, environmental sustainability,

operation reliability, cost minimization.
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Related work

Dutting et al.’s (2019) RegretNet
@ Deep learning framework modeling auction rules as neural networks
@ Structures the problem as a constrained learning problem
@ Focuses on multi-item, revenue maximizing auctions.

(A) THIS WORK

(D) DUTTING ET AL. (2019) AUCTION CLASSIFICATION
(F) FENG ET AL. (2018)

(B) BHARDWAJ ET AL. (2023)
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This work

Future work Reference

(1) Extends the RegretNet framework for electricity auctions

> Recovers analytical solutions with low approximation errors in cost levels
(< 1%) and low constraint violations (< 0.002).

> Discovers new results for (simplified) settings with: (1) uncertain capacity
and demand, (2) correlated costs, (3) multiple time-slot bids

(2) Evaluates the effect in generation costs of integrating wind and solar power in
Colombia using real data

> Expanding capacity and increasing the number of bidders reduces the
expected cost.

» This reduction is slightly higher when wind and solar energy are integrated

> Integration of wind-solar energy reduces the incidence of extreme cost
instances during reduced rainfall periods.
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Optimal auction design problem

@ n generators competing for d; electricity units to produce at each time slot
j € [m].

@ Demand d; is perfectly inelastic.

@ Each generator has a (1) private unit cost v; (same throughout the day) and (2)

known capacities g;; for each time slot j.

@ Unit cost profiles v = (v;)ic[n) drawn from F = (F});c[n], known by the system

operator.

@ Bidders submit a single unit price bid b; for their entire generation.

Auction

@ Given bidding profile b = (b;);c[n], an auction (g, p) is characterized by an
allocation rule g and a payment rule p.

@ g;;: number of units allocated for slot j. p;: payment for energy produced

@ Auctions can be modeled as parametric functions — NN with weights w
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Generators’ profit

@ Generator with unit cost v;, under (g, p) bids b;. Given b € V|, profit is defined

as

I’

i(vs,b) = pi(b) — C(gi(b),vi) if gi;(b) < Gi; Vj € [m]
B —00 otherwise.

where C(gi(b),vi) =37, gi;(b)vi.

Optimal auction properties

o Individually rational (IR): Bidding truthfully results in a non-negative profit
(within NN)

Wi(vi, ('Ui,bfi)) >0, Vie [n],vi eVi,b_, eV_,.

o Demand constraint (DC): Procures demand (within NN)

> gij(b) >d;, Vi€ [mlbeV.
=1
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@ Dominant strategy incentive compatible (DSIC): Incentivizes generators to
report their true unit costs — Regret (rgt) = 0 in the learning problem

i (viy (03, b-4)) > mi(vs, (bi, b—3)), Vi€ [n],v; € Vi, b; € Vi, by € V_y,

where the zero regret condition is defined as

rgti(w) = Eo~p | max vy (i (vi, (vi, v—4)) — i (vi, (vi,0-4))) | =0,

and v = II7.,1 (9%(1}27’0—1‘) < qij)-
o Capacity constraint (CC): Allocation rule assigns generators at most their
capacity — Capacity constraint penalty (ccp) = 0 in the learning problem

gij(b)g(jij, ViE[n],jG [m],beV,

where zero capacity constraint penalty condition is defined as

cepi(w) = Eyop Zmax {gi;(v) — @i;,0}| =0, Vien].
=1
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Model architecture

Neural network for encoding procurement multi-unit auctions

Allocation Network g*¢

Input Layer

Hidden Layers
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P € [0,00) is the information rent
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Learning problem

Minimize daily generation costs

min - Eovp [Z pi (v)]

i=1

st. rgti(w) =0, ccpi(w) =0, Vi€ n]

Augmented Lagrangian method Lift constraints by minimizing the following
unconstrained loss function

L n n r n
Lyw.X) = 23S pE ) SN gt ) + 23 (gt (w))
=1 i=1 =1 i=1
3N, )+ L0 @)
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Analytical solution

For single time-slot settings (m = 1) problem (1) has an analytical solution (based
on Iyengar and Kumar (2008); Chaturvedi (2015)). For n = 2,v; ~ U[0, 1]:

@ Sequentially allocates units to generators with the lowest costs, exhausting their
capacity or until demand is satisfied

. min(d, §;) if v; < v
gi (v) = . _ . (2)
d —min(d, gx) if vi > vk

@ Payment depends on production costs + the opportunity cost of misreporting
(information rent)

pi(w) = 4 Vg () F (vx —vi)gi (v) + (1 —vi)(d —min(d, @) i vi <on g
' vigi (v) + (1 = vi)g; (v) if v; > vy,

@ No incentives to misreport capacity even if it is private (payments depend
positively on capacities and profit is unbounded when CC are violated)
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Single-slot experiments

Overall Perfomance

@ Demand of 1. Unit costs independently drawn from U0, 1].

Constant capacities.

Uncapacitated

|| QQIQ

Q|

= (0.6, 0.6)
(0.6,0.8)

Analytical sol. RegretNet
cost cost rgt ccp
0.6664 0.6691  <0.001 -
0.9333 0.9318 0.001 <0.001
0.8665 0.8693  <0.001  <0.001
0.9333 0.9350 <0.001  <0.001
0.8002 0.7978  <0.001  <0.001

o Cost level errors < 1%, low constraint violations (< 0.001)

@ Increasing aggregate capacity = Lower expected costs

o Distributing aggregate capacity among more generators = Lower expected costs
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Experiment: ¢ = (0.6,0.8)
Allocation rule
Analytical solution
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Uncertain capacity

(1) 2 generators: the first has capacity equal to 0.6 with 80% probability and 0.2
with 20%. The second has constant capacity of 0.8. Unit costs drawn from
Ulo,1]

(2) 3 generators: the first is a wind generator with capacity distributed
Rayleigh(0.3) with unit costs drawn from U|0,0.4]. The second and third
generators have capacity of 0.5 each with unit costs drawn from U[0, 1]

RegretNet

q d cost rgt cep

v; ~ U0, 1]
G = 0.6z 4+ 0.2(1 — z),z ~ Bernoulli(0.8); > = 0.8 1 0.8907 <0.001  <0.001

v ~ U[0,0.4]; V2, V3 ~ U[O7 1]
@1 ~ Rayleigh(0.3); g2, 3 = 0.5 1 0.6770 <0.001 <0.001

Valentina Cepeda Vega

ctior Problem Experiments Future work Reference



Introduction Problem Experiments Future work

00000 000000 O000@0000000

Uncertain capacity (Supply failure)

Expected cost vs. ¢1
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Uncertain capacity (Wind integration)

Expected cost vs. q; Generation mix
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Real-data experiments

Random demand and capacity

2 time slots:

o Low demand slot (1°): 10pm-8am
o High demand slot (2°): 9am-9pm

@ Single daily unit cost for all slots
@ 5 generators grouped by source:

Liquid-fueled thermoelectric
Gas/Coal thermoelectric
Hydro

Wind

Solar

@ Unit costs: Input costs, VOM, taxes (liquid-fueled, gas/coal thermo), minimum
between bid and price (hydro), LCOE (wind, solar)

o Capacities: Declared capacity (liquid-fueled thermo, gas/coal thermo, hydro),
wind speed (wind) and solar irradiance (solar)

@ Data was normalized and distributions were fitted
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Real-data experiments

@ Aggregate capacity was increased by 10%, 20% and 30% using 60% of solar and
40% of wind power.

@ Unit costs of the hydro generator have a right-skewed distribution
@ Higher capacity in the 2° slot for both wind and solar generators.

Unit costs Average capacity

9-
1.0- * *
JT; ‘vl _ ' ' i
2 0.5- * .
’ Y 0 10 20 30
e s %

- == T B Lig fuel B Hydro B Solar

0.0- . ‘ ‘ . "
Liq fuel Gas/Coal Hydro ~ Wind  Solar BN Gas/Coal ~ EEE Wind

@ A denotes the mean. 4+ markers indicate max/min values.
o Left bars: 1° slot, Right bars: 2° slot.
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@ Wind - solar integration: Aggregate capacity was increased by 10%, 20% and
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30% by introducing a wind and a solar generator.

@ Hydro power expansion: Aggregate capacity was increased by 10%, 20% and
30% by introducing 2 additional generators (for comparison)

RegretNet
Capacity Expansion cost rgt cep

0% 0.9470  <0.001 <0.001
Wind - solar intergration

10% 0.7771 <0.001 <0.001

20% 0.6257 <0.001 <0.001

30% 0.5178  <0.001 <0.001
Hydro power expansion

10% 0.7855 <0.001 <0.001

20% 0.6480  <0.001 <0.001

30% 0.5458  <0.001 <0.001
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Contamination and/or fairness constraints
Multi-part and block bidding

Reserve and battery storage management

e 6 o6 o

Demand response programs
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