Problem 000000 Experiments 00000000000 Future work O References

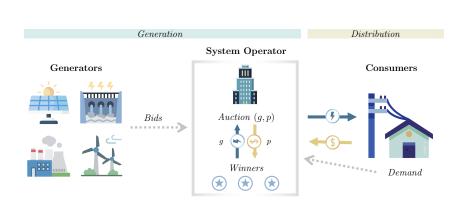
Optimal Design for Electricity Auctions: A Deep Learning Approach

Valentina Cepeda Vega

April 11, 2024

Valentina Cepeda Vega

1/26

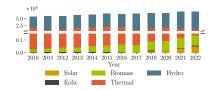

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

oooooo

Experiments 000000000000 Future work O

《日》《聞》《臣》《臣》

Electricity auctions



Problem 000000 Experiments 00000000000 Future work O

References

Colombian electricity market

• Main generation sources: hydro and thermal power

Generation (GWh)

- Concentrated generation capacity in a few firms
- Current design results in bids above true unitary costs (McRae and Wolak, 2017; Balat et al., 2023)
- Plans to diversify generation mix include (UPME, 2020):
 - Introducing solar and wind energy
 - Reducing thermal power due to environmental impact
 - Improving reliability during reduced rainfall periods

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

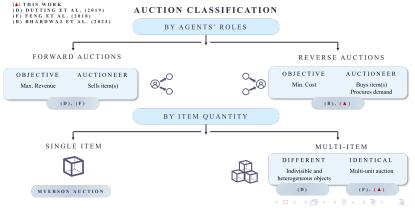
Problem 000000 Experiments 000000000000 Future work O References

Design problem

Optimal auction design

- Strategy-proof auction:
 - Minimizes expected generation costs
 - Incentivizes participation and truthful bidding, procures demand and satisfies capacity constraints

Challenges


- Technical considerations: uncertain capacity and demand, diverse generation technologies, correlated costs.
- Multiple competing objectives: Price stability, environmental sustainability, operation reliability, cost minimization.

Problem 000000 Experiments 000000000000 Future work O References

Related work

Dutting et al.'s (2019) RegretNet

- Deep learning framework modeling auction rules as neural networks
- Structures the problem as a constrained learning problem
- Focuses on multi-item, revenue maximizing auctions.

Valentina Cepeda Vega

Problem 000000 Experiments 000000000000 Future work O

This work

 $(1)\;$ Extends the ${\it RegretNet}\;$ framework for electricity auctions

- ▶ Recovers analytical solutions with low approximation errors in cost levels (< 1%) and low constraint violations (≤ 0.002) .
- ▶ Discovers new results for (simplified) settings with: (1) uncertain capacity and demand, (2) correlated costs, (3) multiple time-slot bids
- (2) Evaluates the effect in generation costs of integrating wind and solar power in Colombia using real data
 - Expanding capacity and increasing the number of bidders reduces the expected cost.
 - ▶ This reduction is slightly higher when wind and solar energy are integrated
 - ▶ Integration of wind-solar energy reduces the incidence of extreme cost instances during reduced rainfall periods.

Optimal auction design problem

- n generators competing for d_j electricity units to produce at each time slot $j \in [m]$.
- Demand d_j is perfectly inelastic.
- Each generator has a (1) private unit cost v_i (same throughout the day) and (2) known capacities \bar{q}_{ij} for each time slot j.
- Unit cost profiles $\boldsymbol{v} = (v_i)_{i \in [n]}$ drawn from $F = (F_i)_{i \in [n]}$, known by the system operator.
- Bidders submit a single unit price bid b_i for their entire generation.

Auction

- Given bidding profile $\boldsymbol{b} = (b_i)_{i \in [n]}$, an auction $(\boldsymbol{g}, \boldsymbol{p})$ is characterized by an allocation rule \boldsymbol{g} and a payment rule \boldsymbol{p} .
- g_{ij} : number of units allocated for slot j. p_i : payment for energy produced
- $\bullet\,$ Auctions can be modeled as parametric functions $\rightarrow\,$ NN with weights w

Introduction Prob 00000 0000		Future work O	References
---------------------------------	--	------------------	------------

Generators' profit

• Generator with unit cost v_i , under $(\boldsymbol{g}, \boldsymbol{p})$ bids b_i . Given $\boldsymbol{b} \in V$, profit is defined as

$$\pi_i(v_i, \boldsymbol{b}) = \begin{cases} p_i(\boldsymbol{b}) - C(\boldsymbol{g}_i(\boldsymbol{b}), v_i) & \text{if } g_{ij}(\boldsymbol{b}) \leq \bar{q}_{ij} \ \forall j \in [m] \\ -\infty & \text{otherwise.} \end{cases},$$

where $C(\boldsymbol{g}_i(\boldsymbol{b}), v_i) = \sum_{j=1}^m g_{ij}(\boldsymbol{b}) v_i$.

Optimal auction properties

• Individually rational (IR): Bidding truthfully results in a non-negative profit (within NN)

$$\pi_i(v_i, (v_i, \boldsymbol{b}_{-i})) \ge 0, \quad \forall i \in [n], v_i \in \mathcal{V}_i, \boldsymbol{b}_{-i} \in \mathcal{V}_{-i}.$$

• Demand constraint (DC): Procures demand (within NN)

$$\sum_{i=1}^n g_{ij}(oldsymbol{b}) \geq d_j, \quad orall j \in [m], oldsymbol{b} \in \mathcal{V}.$$

• Dominant strategy incentive compatible (DSIC): Incentivizes generators to report their true unit costs \rightarrow Regret (rgt) = 0 in the learning problem

 $\pi_i(v_i, (v_i, \boldsymbol{b}_{-i})) \ge \pi_i(v_i, (b_i, \boldsymbol{b}_{-i})), \quad \forall i \in [n], v_i \in \mathcal{V}_i, b_i \in \mathcal{V}_i, \boldsymbol{b}_{-i} \in \mathcal{V}_{-i},$

where the zero regret condition is defined as

$$rgt_i(\boldsymbol{w}) = \mathbb{E}_{\boldsymbol{v}\sim F}\left[\max_{v_i'\in\mathcal{V}_i}\gamma\left(\pi_i^w(v_i,(v_i',\boldsymbol{v}_{-i})) - \pi_i^w(v_i,(v_i,\boldsymbol{v}_{-i}))\right)\right] = 0,$$

and $\gamma = \prod_{j=1}^m \mathbb{1}\left(g_{ij}^w(v_i', \boldsymbol{v}_{-i}) \leq \bar{q}_{ij}\right).$

• Capacity constraint (CC): Allocation rule assigns generators at most their capacity \rightarrow Capacity constraint penalty (*ccp*) = 0 in the learning problem

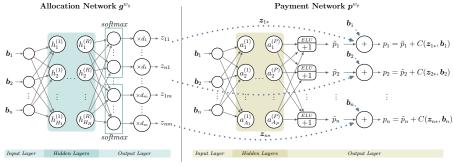
$$g_{ij}(\boldsymbol{b}) \leq \bar{q}_{ij}, \quad \forall i \in [n], j \in [m], \boldsymbol{b} \in \mathcal{V},$$

where zero capacity constraint penalty condition is defined as

$$ccp_i(\boldsymbol{w}) = \mathbb{E}_{\boldsymbol{v} \sim F}\left[\sum_{j=1}^m \max\left\{g_{ij}^w(\boldsymbol{v}) - \bar{q}_{ij}, 0\right\}\right] = 0, \quad \forall i \in [n].$$

Valentina Cepeda Vega

・ロト・白 ト・モー・ モー うくぐ


Problem 000**0**00 Experiments 00000000000 Future work O

(日) (周) (王) (王)

References

Model architecture

Neural network for encoding procurement multi-unit auctions

 $\tilde{p} \in [0,\infty)$ is the information rent

 $\begin{array}{c} \operatorname{Problem} \\ 0000 \bullet 0 \end{array}$

Experiments 000000000000 Future work O References

Learning problem

Minimize daily generation costs

$$\min_{\boldsymbol{w}\in\mathbb{R}^r} \quad \mathbb{E}_{\boldsymbol{v}\sim F}\left[\sum_{i=1}^n p_i^{\boldsymbol{w}}(\boldsymbol{v})\right] \\
\text{s.t.} \quad rgt_i(\boldsymbol{w}) = 0, \quad ccp_i(\boldsymbol{w}) = 0, \quad \forall i \in [n]$$
(1)

Augmented Lagrangian method Lift constraints by minimizing the following unconstrained loss function

$$\mathcal{L}_{p}(\boldsymbol{w},\boldsymbol{\lambda}) = \frac{1}{L} \sum_{\ell=1}^{L} \sum_{i=1}^{n} p_{i}^{w}(\boldsymbol{v}^{(\ell)}) + \sum_{i=1}^{n} \lambda_{i}^{rgt} \widehat{rgt}_{i}(\boldsymbol{w}) + \frac{\rho^{rgt}}{2} \sum_{i=1}^{n} \left(\widehat{rgt}_{i}(\boldsymbol{w})\right)^{2} + \sum_{i=1}^{n} \lambda_{i}^{ccp} \widehat{ccp}_{i}(\boldsymbol{w}) + \frac{\rho^{ccp}}{2} \sum_{i=1}^{n} \left(\widehat{ccp}_{i}(\boldsymbol{w})\right)^{2}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Problem 000000 Experiments 00000000000 Future work O

Analytical solution

For single time-slot settings (m = 1) problem (1) has an analytical solution (based on Iyengar and Kumar (2008); Chaturvedi (2015)). For $n = 2, v_i \sim U[0, 1]$:

• Sequentially allocates units to generators with the lowest costs, exhausting their capacity or until demand is satisfied

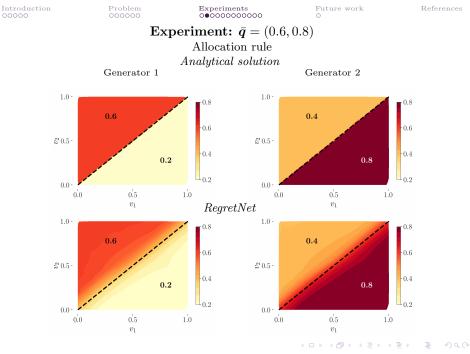
$$g_i^*(\boldsymbol{v}) = \begin{cases} \min(d, \bar{q}_i) & \text{if } v_i < v_k \\ d - \min(d, \bar{q}_k) & \text{if } v_i > v_k \end{cases}$$
(2)

• Payment depends on production costs + the opportunity cost of misreporting (*information rent*)

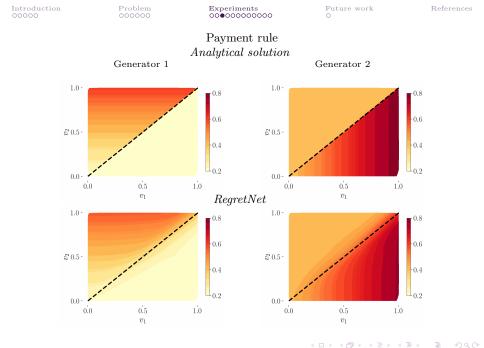
$$p_i^*(\boldsymbol{v}) = \begin{cases} v_i g_i^*(\boldsymbol{v}) + (v_k - v_i) g_i^*(\boldsymbol{v}) + (1 - v_k) (d - \min(d, \bar{q}_k)) & \text{if } v_i < v_k \\ v_i g_i^*(\boldsymbol{v}) + (1 - v_i) g_i^*(\boldsymbol{v}) & \text{if } v_i > v_k \end{cases}$$
(3)

• No incentives to misreport capacity even if it is private (payments depend positively on capacities and profit is unbounded when CC are violated)

Problem 000000 Experiments •0000000000 Future work O


Single-slot experiments

Overall Perfomance


• Demand of 1. Unit costs independently drawn from U[0, 1]. Constant capacities.

	Analytical sol.	RegretNet		
	cost	cost	rgt	ccp
Uncapacitated	0.6664	0.6691	< 0.001	_
$\bar{\boldsymbol{q}} = (0.6, 0.6)$ $\bar{\boldsymbol{q}} = (0.6, 0.8)$	$0.9333 \\ 0.8665$	$0.9318 \\ 0.8693$	0.001 < 0.001	< 0.001 < 0.001
$\bar{q} = (0.3, 0.9)$ $\bar{q} = (0.6, 0.4, 0.4)$	0.9333 0.8002	$0.9350 \\ 0.7978$	<0.001 <0.001	<0.001 <0.001

- Cost level errors < 1%, low constraint violations (≤ 0.001)
- Increasing aggregate capacity \Rightarrow Lower expected costs
- Distributing aggregate capacity among more generators \Rightarrow Lower expected costs

Valentina Cepeda Vega

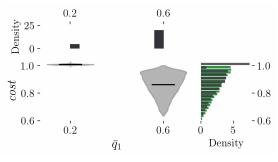
Valentina Cepeda Vega

15/26

Problem 000000 Experiments 00000000000 Future work O

References

Uncertain capacity


- (1) 2 generators: the first has capacity equal to 0.6 with 80% probability and 0.2 with 20%. The second has constant capacity of 0.8. Unit costs drawn from U[0,1]
- (2) 3 generators: the first is a wind generator with capacity distributed Rayleigh(0.3) with unit costs drawn from U[0, 0.4]. The second and third generators have capacity of 0.5 each with unit costs drawn from U[0, 1]

		RegretNet		
$ar{q}$	d	cost	rgt	ccp
$v_i \sim U[0, 1]$	1	0.0007	-0.001	10 001
$\bar{q}_1 = 0.6x + 0.2(1-x), x \sim \text{Bernoulli}(0.8); \bar{q}_2 = 0.8$	1	0.8907	< 0.001	< 0.001
$v_1 \sim U[0, 0.4]; v_2, v_3 \sim U[0, 1]$				
$\bar{q}_1 \sim \text{Rayleigh}(0.3); \bar{q}_2, \bar{q}_3 = 0.5$	1	0.6770	< 0.001	< 0.001

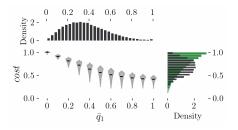
Uncertain capacity (Supply failure)

Expected cost vs. \bar{q}_1

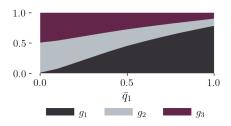
Supply failure risk

-

イロト イボト イヨト イヨト


Problem 000000 Experiments 0000000000

Future work


References

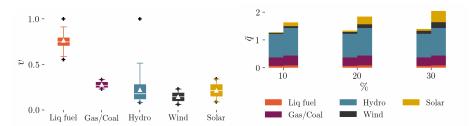
Uncertain capacity (Wind integration)

Expected cost vs. \bar{q}_1

Generation mix

イロト イボト イヨト イヨト

Real-data experiments


- Random demand and capacity
- 2 time slots:
 - Low demand slot (1°): 10pm-8am
 - High demand slot (2°): 9am-9pm
- Single daily unit cost for all slots
- 5 generators grouped by source:
 - Liquid-fueled thermoelectric
 - Gas/Coal thermoelectric
 - Hydro
 - Wind
 - Solar
- Unit costs: Input costs, VOM, taxes (liquid-fueled, gas/coal thermo), minimum between bid and price (hydro), LCOE (wind, solar)
- Capacities: Declared capacity (liquid-fueled thermo, gas/coal thermo, hydro), wind speed (wind) and solar irradiance (solar)
- Data was normalized and distributions were fitted

Problem 000000 Experiments 000000000000 Future work O

Real-data experiments

Unit costs

- Aggregate capacity was increased by 10%, 20% and 30% using 60% of solar and 40% of wind power.
- Unit costs of the hydro generator have a right-skewed distribution
- Higher capacity in the 2° slot for both wind and solar generators.

Average capacity

イロト イボト イヨト イヨト

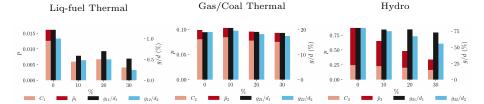
- \triangle denotes the mean. + markers indicate max/min values.
- Left bars: 1° slot, Right bars: 2° slot.

Valentina Cepeda Vega

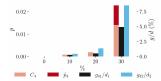
-

Problem
000000

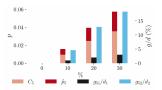
Experiments 0000000000000

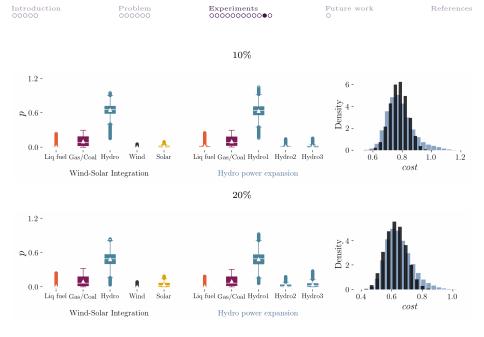

Future work

- Wind solar integration: Aggregate capacity was increased by 10%, 20% and 30% by introducing a wind and a solar generator.
- Hydro power expansion: Aggregate capacity was increased by 10%, 20% and 30% by introducing 2 additional generators (for comparison)

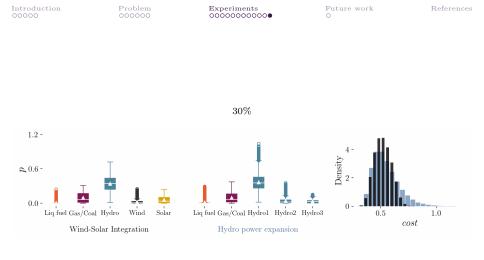

	RegretNet		
Capacity Expansion	cost	rgt	ccp
0% Wind - solar intergration	0.9470	< 0.001	< 0.001
10%	0.7771	< 0.001	< 0.001
20%	0.6257	< 0.001	< 0.001
30%	0.5178	< 0.001	< 0.001
Hydro power expansion			
10%	0.7855	< 0.001	< 0.001
20%	0.6480	< 0.001	< 0.001
30%	0.5458	< 0.001	< 0.001

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()





Wind


 Solar

3

イロト イヨト イヨト イヨト

Valentina Cepeda Vega

3

イロト イヨト イヨト イヨト

Problem

Experiments 000000000000 Future work

References

Future work

- Contamination and/or fairness constraints
- Multi-part and block bidding
- Reserve and battery storage management
- Demand response programs

イロト 不問 トイヨト 不良 トーヨ

Problem 000000 Experiments 00000000000 Future work O

References I

- BALAT, J., J. E. CARRANZA, J. D. MARTIN, AND A. J. RIASCOS (2023): "El efecto de cambios en la regulación del mercado mayorista de electricidad en Colombia en un modelo estructural de subastas complejas," Tech. rep.
- CHATURVEDI, A. (2015): "Procurement auctions with capacity constrained suppliers," European Journal of Operational Research, 247, 987–995.
- DÜTTING, P., Z. FENG, H. NARASIMHAN, D. PARKES, AND S. S. RAVINDRANATH (2019): "Optimal auctions through deep learning," in *International Conference on Machine Learning*, PMLR, 1706–1715.
- IYENGAR, G. AND A. KUMAR (2008): "Optimal procurement mechanisms for divisible goods with capacitated suppliers," *Review of Economic Design*, 12, 129–154.
- MCRAE, S. D. AND F. A. WOLAK (2017): "Market power in a hydro-dominated wholesale electricity market," Documento de trabajo, 1036.
- UPME (2020): "Plan Energético Nacional 2020-2050," National document, published by Unidad de Planeación Minero-Energética (UPME).

Valentina Cepeda Vega