Modelling Under-reported Spatio-temporal Events

In joint work with Jose Sebastian Ñungo, Lucas Gomez and Mateo Dulce; we introduce an under-reporting model of spatio-temporal events motivated by relevant real-world applications such as citizen security. Under-reporting of socially sensitive events can undermine the credibility of official figures and can be used strategically by official agents or the general public. Models that simultaneously estimate incidence and under-reporting rates of events can be used to improve the allocation of public resources.

The under-reporting of data is a common phenomenon in many data-related problems. For instance, under-reporting is a widely studied problem in survey sampling, where it is an important example of non-sampling errors that can introduce biases in the estimations. This problem is of particular relevance in public policy issues where government agents try to monitor geographically distributed incidents that are often under-reported. For example, sanity restaurant food inspection services, child services, pest controls, building’s compliance safety regulations, animal poaching surveillance at natural parks, crime incidents in a city, among many others. For example in year 2021, the Bogota City chamber of commerce victimization and reporting survey reported an average victimization rate of 17% and, among those, only 49% said they had reported the event to the police.

To solve this model we modify well-known combinatorial multi-armed bandit algorithms. After validating our model, we use real crime data from a large city, Bogota – Colombia, showing that the model is able to estimate the true crime and under-reporting rates.

The next figure shows monthly aggregate violent crimes as reported in the offcial statistics of the City (red line SIEDCO). The blue line shows aggregate violent crimes as reported to the emergency and security call center of the City (blue line NUSE). The Total line is our estimate of crime. It is construted from SIEDCO and NUSE as explained in the article.

This figure shows monthly aggregate violent crimes as reported in the offcial statistics of the City (red line SIEDCO). The blue line shows aggregate violent crimes as reported to the emergency and security call center of the City (blue line NUSE). The Total line is our estimate of crime. It is construted from SIEDCO and NUSE as explained in the article.

The next two pictures show how our proposed algorithm discovers the aggregate number of crimes in the city (first figure) and our estimated number of under-reporte crimes (second picture). Note that these two pictures try to discover, visiting in each period at most 10% of the area of the city, the true incidence and under-reporting rates, and they should be compared with our previos empirical estimate: Total and NUSE, of previous figure.

Convergence of the estimated total number of crimes to the observed number of crimes in the city. Three different algorithms.

Convergence of the estimated total number of under-reported crimes implied by the model. Three different algorithms.

However, note from the previous figure, that none of the algortihms converge to the true under-reporting rate after 350 iterations. The next picture further explores the nature of this convergence. The figure shows an histogram of cells (i.e., 1 km^2 regions that cover the whole city) for the distances between our estimate of true under-reporting rate (i.e., NUSE) and our best estimate after 350 iterations of the algortihm. As can bee seen, almost all cells, with CUCB algorithm, have an error of less than 0.2.

Histogram of convergence of estimated error of under-reporting rate in the last round to the empirical mean of the under-reporting rate for the whole sample. Absolute value reported.

Just for fun, the next figure ilustrates the convergence, using CUCB algorithm, of the estimated crime and under-reporting of events in the city, to the real values. The first column, second and third rows shows the heat map of the estimated crime incidence rates after 25 iterations and 100 iterations, respectively. The second column, first row shows real under-reporting as measured by NUSE dataset. The second column, second and third rows shows the heat map of the estimated under-reporting crime after 25 iterations and 100 iterations, respectively.

In a nutshell: the proposed model seems to work well for discovering the true incidence and under-reporting rates of special spatio-temporal events such as crime incidents.

Tags
Natural language processing

Newsletter

Get information about Data Science, Artificial Intelligence, Machine Learning and more.

Recent articles

In the Blog articles, you will find the latest news, publications, studies and articles of current interest.

Algorithmic Justice

Justicia en los Modelos de Inteligencia Artificial: Nueva Perspectiva Basada en el Re-diseño de Algoritmos

En los últimos años, los modelos de inteligencia artificial han demostrado un potencial increíble para transformar industrias, desde la salud hasta las finanzas. Sin embargo, también han expuesto un problema preocupante: el sesgo algorítmico.

Machine Learning

Inferencia Robusta y Cuantificación de Incertidumbre para la Toma de Decisiones Basada en Datos

Los modelos de aprendizaje automático se han convertido en herramientas esenciales para la toma de decisiones en sectores críticos como la salud, las políticas públicas y las finanzas. Sin embargo, su aplicación práctica enfrenta dos grandes desafíos: el sesgo de selección en los datos y la cuantificación adecuada de la incertidumbre.

Redes Neuronales

El Potencial Impacto del Aprendizaje de Máquinas en el Diseño de las Políticas Públicas en Colombia: Una década de experiencias

Este blog es un resumen extendido del articulo Riascos, A. (2025).1 Desde el inicio de la llamada tercera ola de redes neuronales (Goodfellow et al., (2016)), en la primera década de este siglo, se ha generado una gran esperanza en las posibilidades de la inteligencia artificial para transformar todas las actividades humanas. Asimismo, se han levantado alertas sobre los riesgos que conlleva la introducción de esta nueva tecnología (Bengio et al., (2024)).

Deep Learning

Explorando Redes Neuronales en Grafos para la Clasificación de Asentamientos Informales en Bogotá, Colombia

Los asentamientos informales son definidos como áreas residenciales cuyos habitantes no poseen tenencia legal de las tierras, los barrios carecen de servicios básicos e infraestructura urbana y no cumplen con requisitos de planificación, así como se pueden encontrar en zonas de peligro ambiental y geográfico (ONU, 2015).

Technology

Reinforcement Learning para Optimización de Portafolios

En el contexto de los mercados financieros, la optimización de portafolios consiste en identificar la combinación óptima de activos para maximizar la relación retorno-riesgo. No obstante, esta toma de decisiones se realiza en un entorno de incertidumbre, ya que el comportamiento de los activos no es estacionario a lo largo del tiempo.

Technology

Clustering de datos genómicos

La secuenciación de RNA es una técnica que permite analizar la actividad de los genes en una muestra, como sangre, cerebro u otro tejido animal. Actualmente, es una de las herramientas más utilizadas en biología computacional y medicina, ya que facilita el estudio del impacto de las enfermedades en la expresión génica, lo que, a su vez, afecta la síntesis de proteínas y, en consecuencia, el funcionamiento celular.