Modelling Under-reported Spatio-temporal Events

In joint work with Jose Sebastian Ñungo, Lucas Gomez and Mateo Dulce; we introduce an under-reporting model of spatio-temporal events motivated by relevant real-world applications such as citizen security. Under-reporting of socially sensitive events can undermine the credibility of official figures and can be used strategically by official agents or the general public. Models that simultaneously estimate incidence and under-reporting rates of events can be used to improve the allocation of public resources.

The under-reporting of data is a common phenomenon in many data-related problems. For instance, under-reporting is a widely studied problem in survey sampling, where it is an important example of non-sampling errors that can introduce biases in the estimations. This problem is of particular relevance in public policy issues where government agents try to monitor geographically distributed incidents that are often under-reported. For example, sanity restaurant food inspection services, child services, pest controls, building’s compliance safety regulations, animal poaching surveillance at natural parks, crime incidents in a city, among many others. For example in year 2021, the Bogota City chamber of commerce victimization and reporting survey reported an average victimization rate of 17% and, among those, only 49% said they had reported the event to the police.

To solve this model we modify well-known combinatorial multi-armed bandit algorithms. After validating our model, we use real crime data from a large city, Bogota – Colombia, showing that the model is able to estimate the true crime and under-reporting rates.

The next figure shows monthly aggregate violent crimes as reported in the offcial statistics of the City (red line SIEDCO). The blue line shows aggregate violent crimes as reported to the emergency and security call center of the City (blue line NUSE). The Total line is our estimate of crime. It is construted from SIEDCO and NUSE as explained in the article.

This figure shows monthly aggregate violent crimes as reported in the offcial statistics of the City (red line SIEDCO). The blue line shows aggregate violent crimes as reported to the emergency and security call center of the City (blue line NUSE). The Total line is our estimate of crime. It is construted from SIEDCO and NUSE as explained in the article.

The next two pictures show how our proposed algorithm discovers the aggregate number of crimes in the city (first figure) and our estimated number of under-reporte crimes (second picture). Note that these two pictures try to discover, visiting in each period at most 10% of the area of the city, the true incidence and under-reporting rates, and they should be compared with our previos empirical estimate: Total and NUSE, of previous figure.

Convergence of the estimated total number of crimes to the observed number of crimes in the city. Three different algorithms.

Convergence of the estimated total number of under-reported crimes implied by the model. Three different algorithms.

However, note from the previous figure, that none of the algortihms converge to the true under-reporting rate after 350 iterations. The next picture further explores the nature of this convergence. The figure shows an histogram of cells (i.e., 1 km^2 regions that cover the whole city) for the distances between our estimate of true under-reporting rate (i.e., NUSE) and our best estimate after 350 iterations of the algortihm. As can bee seen, almost all cells, with CUCB algorithm, have an error of less than 0.2.

Histogram of convergence of estimated error of under-reporting rate in the last round to the empirical mean of the under-reporting rate for the whole sample. Absolute value reported.

Just for fun, the next figure ilustrates the convergence, using CUCB algorithm, of the estimated crime and under-reporting of events in the city, to the real values. The first column, second and third rows shows the heat map of the estimated crime incidence rates after 25 iterations and 100 iterations, respectively. The second column, first row shows real under-reporting as measured by NUSE dataset. The second column, second and third rows shows the heat map of the estimated under-reporting crime after 25 iterations and 100 iterations, respectively.

In a nutshell: the proposed model seems to work well for discovering the true incidence and under-reporting rates of special spatio-temporal events such as crime incidents.

Recent articles

In the Blog articles, you will find the latest news, publications, studies and articles of current interest.

AI Governance

Beyond Automation: Why We Need New Metrics to Understand the Future of Work with AI

In recent years, the conversation about artificial intelligence and employment has been dominated by a substitution narrative: Which jobs will disappear? How many jobs will be replaced by algorithms? While this question is important, it has led us to view the future of work from a narrow perspective…

IA

AI for the Common Good: Capabilities, Power, and Participation

How should we understand the concept of developing Artificial Intelligence for the common good? This is a key question, which, according to philosopher Diana Acosta Navas, opens up two central dimensions: one philosophical and the other political…

IA

SESGO: A Critical Look at AI Biases in Spanish

In recent years, language models have transformed the way we interact with information. From virtual assistants to decision-support systems, these tools have become omnipresent…

Algorithmic Justice

Justice in Artificial Intelligence Models: A New Perspective Based on Algorithm Redesign

In recent years, artificial intelligence models have demonstrated incredible potential to transform industries, from healthcare to finance. However, they have also exposed a troubling issue: algorithmic bias.

Machine Learning

Robust Inference and Uncertainty Quantification for Data-Driven Decision Making

Machine learning models have become essential tools for decision-making in critical sectors such as healthcare, public policy, and finance. However, their practical application faces two major challenges: selection bias in the data and the proper quantification of uncertainty.

Neural Networks

The Potential Impact of Machine Learning on Public Policy Design in Colombia: A Decade of Experiences

This blog is an extended summary of the article Riascos, A. (2025). Since the beginning of the so-called third wave of neural networks (Goodfellow et al., (2016)) in the first decade of this century, there has been great hope in the possibilities of artificial intelligence to transform all human activities. At the same time, warnings have been raised about the risks involved in the introduction of this new technology (Bengio et al., (2024)).